

Epaq MR Hardware Manual

P/N: EDU209 Revision: 1.07.00a

٢

ESTOP

DIGITAL / ANALOG IO

MOTOR

 \bigcirc

Global Technical Support

Go to www.aerotech.com/global-technical-support for information and support about your Aerotech products. The website provides downloadable resources (such as up-to-date software, product manuals, and Help files), training schedules, and PC-to-PC remote technical support. You can also complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. For immediate help, contact a service office or your sales representative. Have your customer order number available before you call or include it in your email.

United States (Wo	orld Headquarters)	
Phone: +1-412-967-6440	101 Zeta Drive	
Fax: +1-412-967-6870	Pittsburgh, PA 15238-2811	
Email: service@aerotech.com	www.aerotech.com	
United Kingdom	Japan	
Phone: +44 (0)1256 855055	Phone: +81 (0)50 5830 6814	
Fax: +44 (0)1256 855649	Fax: +81 (0)43 306 3773	
Email: service@aerotech.co.uk	Email: service@aerotechkk.co.jp	
Germany	China	
Phone: +49 (0)911 967 9370 Fax: +49 (0)911 967 93720 Email: service@aerotechgmbh.de	Phone: +86 (21) 3319 7715 Email: service@aerotech.com	
France	Taiwan	
Phone: +33 2 37 21 87 65	Phone: +886 (0)2 8751 6690	
Email: service@aerotech.co.uk	Email: service@aerotech.tw	

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2009-2023, Aerotech, Inc., All rights reserved.

Aerotech Worldwide

Table of Contents

List of Tables6EU Declaration of Conformity7Agency Approvals8Safety Procedures and Warnings9Quick Installation Guide11Chapter 1: Introduction131.1. Electrical Specifications161.1.1. System Power Requirements191.2. Mechanical Specifications201.3. Environmental Specifications221.4. Drive and Software Compatibility23	Epaq MR Hardware Manual	
EU Declaration of Conformity 7 Agency Approvals 8 Safaty Procedures and Warnings 9 Quick Installation Guide 11 Chapter 1: Introduction 13 1.1. Electrical Specifications 16 1.1.1. System Power Requirements 19 1.2. Mechanical Specifications 20 1.3. Environmental Specifications 22 1.4. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25 2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/ Or and Signal Wring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3. 1.1. Powered Motor Phasing 33 2.3. 1.2. Unpowered Motor Phasing 33 2.3.1.2. Unpowered Motor Phasing 36 2.3.3. Stepper Motor Connections 36 2.3.3. Stepper Motor Connections 36 2.3.4.1. Droder Inputs 38 2.4.1.2.	Table of Contents	3
EU Declaration of Conformity 7 Agency Approvals 8 Safaty Procedures and Warnings 9 Quick Installation Guide 11 Chapter 1: Introduction 13 1.1. Electrical Specifications 16 1.1.1. System Power Requirements 19 1.2. Mechanical Specifications 20 1.3. Environmental Specifications 22 1.4. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25 2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/ Or and Signal Wring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3. 1.1. Powered Motor Phasing 33 2.3. 1.2. Unpowered Motor Phasing 33 2.3.1.2. Unpowered Motor Phasing 36 2.3.3. Stepper Motor Connections 36 2.3.3. Stepper Motor Connections 36 2.3.4.1. Droder Inputs 38 2.4.1.2.	List of Figures	5
Agency Approvals 8 Safety Procedures and Warnings 9 Quick Installation Guide 11 Chapter 1: Introduction 13 1.1. Electrical Specifications 16 1.1.1. System Power Requirements 19 1.2. Mechanical Specifications 20 1.3. Environmental Specifications 22 1.4. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25 2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.1. AC Power Connections 27 2.2.2. Woltage Selection 30 2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 31 2.3.1. Drushless Motor Connections 32 2.3.1. Drushless Motor Connections 32 2.3.2.1. Drupowered Motor Phasing 33 2.3.2.1. Drupowered Motor Phasing 34 2.3.2.1. Drupowered Motor Phasing 35 2.3.3.1. Stepper Motor Connections 36 2.4.4.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2	List of Tables	6
Safety Procedures and Warnings 9 Quick Installation Guide 11 Chapter 1: Introduction 13 1.1. Electrical Specifications 16 1.1.1. System Power Requirements 19 1.2. Mechanical Specifications 20 1.3. Environmental Specifications 22 1.4. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25 2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/O and Signal Wing Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3.1.1. Prowered Motor Phasing 33 2.3.1.2. Unpowered Motor and Feedback Phasing 34 2.3.2. DC Brush Motor Connections 35 2.3.3.1. Stepper Motor Connections 36 2.3.3.1. Stepper Motor Connections 36 2.3.3.1. Stepper Motor Connections 36 2.3.3.1. Stepper Motor Phasing 36<	EU Declaration of Conformity	7
Safety Procedures and Warnings 9 Quick Installation Guide 11 Chapter 1: Introduction 13 1.1. Electrical Specifications 16 1.1.1. System Power Requirements 19 1.2. Mechanical Specifications 20 1.3. Environmental Specifications 22 1.4. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25 2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/O and Signal Wing Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3.1.1. Prowered Motor Phasing 33 2.3.1.2. Unpowered Motor and Feedback Phasing 34 2.3.2. DC Brush Motor Connections 35 2.3.3.1. Stepper Motor Connections 36 2.3.3.1. Stepper Motor Connections 36 2.3.3.1. Stepper Motor Connections 36 2.3.3.1. Stepper Motor Phasing 36<	Agency Approvals	8
Chapter 1: Introduction 13 1.1. Electrical Specifications 16 1.1.1. System Power Requirements 19 1.2. Mechanical Specifications 20 1.3. Environmental Specifications 22 1.4. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25 2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/ O and Signal Wiing Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3.1.0 and Signal Wiing Requirements 32 2.3.1.1. Powered Motor Phasing 33 2.3.1.2. Unpowered Motor and Feedback Phasing 34 2.3.2.0. D Brush Motor Connections 36 2.3.3. Stepper Motor Connections 37 2.4.1. RS-422 Line Driver Encoder (Stan		
11. Electrical Specifications 16 1.1.1. System Power Requirements 19 12. Mechanical Specifications 20 13. Environmental Specifications 22 14. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25 2.1. Unpacking the Chassis 25 2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3. I. Drushless Motor Connections 32 2.3.1.1. Powered Motor Phasing 33 2.3.1.2. Unpowered Motor Phasing 36 2.3.2.1. DC Brush Motor Phasing 36 2.3.3. Stepper Motor Connections 37 2.4.1.1. Rcs422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.3.3. Stepper Motor Phasing 42 2.4.1.1. Rns422 Line Driver Encoder (Standard) 39 2.4.1.1. Rns422	Quick Installation Guide	11
11. Electrical Specifications 16 1.1.1. System Power Requirements 19 12. Mechanical Specifications 20 13. Environmental Specifications 22 14. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25 2.1. Unpacking the Chassis 25 2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3. I. Drushless Motor Connections 32 2.3.1.1. Powered Motor Phasing 33 2.3.1.2. Unpowered Motor Phasing 36 2.3.2.1. DC Brush Motor Phasing 36 2.3.3. Stepper Motor Connections 37 2.4.1.1. Rcs422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.3.3. Stepper Motor Phasing 42 2.4.1.1. Rns422 Line Driver Encoder (Standard) 39 2.4.1.1. Rns422	Chanter 4. Introduction	40
1.1.1. System Power Requirements 19 1.2. Mechanical Specifications 20 1.3. Environmental Specifications 22 1.4. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25 2.1. Unpacking the Chassis 25 2.2.1. AC Power Connections 27 2.2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3.1. Prowheed Motor Phasing 33 2.3.1. Dowered Motor and Feedback Phasing 34 2.3.2. DC Brush Motor Connections 36 2.3.3.1. Stepper Motor Phasing 36 2.4.1. Encoder Inputs 38 2.4.1.2. Analog Encoder Interface 40 2.4.1.3. Encoder Phasing 42 2.4.2. Hall-Effect Inputs 44 2.4.3. Therwistor Input 45 2.4.1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface <t< td=""><td>•</td><td></td></t<>	•	
1.2. Mechanical Specifications 20 1.3. Environmental Specifications 22 1.4. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25. 2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 26 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3.1. Brushless Motor Connections 32 2.3.1.1. Prowered Motor Phasing 33 2.3.2. DC Brush Motor Connections 36 2.3.3. Stepper Motor Connections 36 2.3.3. Stepper Motor Connections 36 2.3.3. Stepper Motor Phasing 36 2.4. 1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.3.3. Encoder Phasing 42 2.4.4.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.3.3. Encoder Phasing 42 2.4.4.4. Encode		
1.3. Environmental Specifications 22 1.4. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25 2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3.1. Brushless Motor Connections 32 2.3.1.1. Powered Motor Phasing 33 2.3.1.2. Unpowered Motor Phasing 33 2.3.3.1. Stepper Motor Connections 36 2.4. Motor Feedback Connections 36 2.3.3. Stepper Motor Connections 37 2.4. 1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.1.3. Encoder Inputs 44 2.4.3. Thermistor Input 45 2.4.4. Encoder Fhasing 44 2.4.5. End Of Travel Limit Inputs 47 2.4.6. Brake Output 49 2.4.7. Jifferential Analog Input 0 50		
1.4. Drive and Software Compatibility 23 Chapter 2: Installation and Configuration 25 2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3.1. Brushless Motor Connections 32 2.3.1. Drowered Motor Phasing 33 2.3.1. Drowered Motor Phasing 33 2.3.2.1. DC Brush Motor Connections 35 2.3.2.1. DC Brush Motor Phasing 35 2.3.3. Stepper Motor Connections 36 2.3.3. Stepper Motor Connections 36 2.4.1. Encoder Inputs 36 2.4.1. Encoder Inputs 38 2.4.1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.2. Hall-Effect Inputs 44 2.4.3.1.3. Encoder Phasing 42 2.4.4.4. Encoder Fault Input 45 2.4.5. End Of Travel Limit Inputs 47 2.4.5. End Of Travel Limit Inputs 47		
Chapter 2: Installation and Configuration 25 2.1. Uppacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3. I. Brushless Motor Connections 32 2.3.1.1. Powered Motor Phasing 33 2.3.2.1.2. Unpowered Motor Phasing 33 2.3.2.1. DC Brush Motor Phasing 35 2.3.3.1. Stepper Motor Connections 36 2.3.3.1. Stepper Motor Phasing 36 2.4.1.1. RS-422 Line Driver Encoder (Standard) 38 2.4.1.2. Ralog Encoder Interface 40 2.4.1.3. Encoder Phasing 42 2.4.4.2. Halle-Effect Inputs 44 2.4.3.1.3. Encoder Phasing 42 2.4.4.2. Halle-Effect Inputs 44 2.4.5. End Of Travel Limit Input 45 2.4.6. Brake Output 49 2.4.7. Differential Analog Input 0 50 2.5. Digital / Analog IO connections 51		
2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3. In Connections 31 2.3. In Brushless Motor Connections 32 2.3.1.1. Powered Motor Phasing 33 2.3.2.1. DC Brush Motor Connections 35 2.3.2.1. DC Brush Motor Connections 35 2.3.2.1. DC Brush Motor Phasing 35 2.3.3.1. Stepper Motor Connections 36 2.4.1. Encoder Inputs 36 2.4.1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.1.3. Encoder Phasing 42 2.4.1.4. Encoder Fault Inputs 44 2.4.3. Thermistor Input 45 2.4.4.4. Encoder Fault Inputs 47 2.4.5. End Of Travel Limit Inputs 47 2.4.6. Brake Output 49 2.4.7. Differential Analog Input 0 50 2.5	1.4. Drive and Software Compatibility	23
2.1. Unpacking the Chassis 25 2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3. In Connections 31 2.3. In Brushless Motor Connections 32 2.3.1.1. Powered Motor Phasing 33 2.3.2.1. DC Brush Motor Connections 35 2.3.2.1. DC Brush Motor Connections 35 2.3.2.1. DC Brush Motor Phasing 35 2.3.3.1. Stepper Motor Connections 36 2.4.1. Encoder Inputs 36 2.4.1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.1.3. Encoder Phasing 42 2.4.1.4. Encoder Fault Inputs 44 2.4.3. Thermistor Input 45 2.4.4.4. Encoder Fault Inputs 47 2.4.5. End Of Travel Limit Inputs 47 2.4.6. Brake Output 49 2.4.7. Differential Analog Input 0 50 2.5	Chapter 2: Installation and Configuration	25
2.2. Electrical Installation 26 2.2.1. AC Power Connections 27 2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3. Motor Output Connections 32 2.3. I. Brushless Motor Connections 32 2.3.1.2. Unpowered Motor Phasing 33 2.3.1.2. Unpowered Motor Connections 35 2.3.2.1. DC Brush Motor Connections 36 2.3.3. Stepper Motor Connections 36 2.3.3. Stepper Motor Connections 36 2.3.3. Stepper Motor Connections 36 2.4.1. Decoder Inputs 38 2.4.1. Encoder Inputs 38 2.4.1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.3. Thermistor Input 45 2.4.4. Hall-Effect Inputs 44 2.4.3. Thermistor Input 45 2.4.4. Encoder Fault Input 46 2.4.5. End Of Travel Limit Phasing 48 2.4.6. Brake Output 49 2.4.7		
2.2.1. AC Power Connections272.2.2. Minimizing Conducted, Radiated, and System Noise282.2.3. I/O and Signal Wiring Requirements292.2.4. Voltage Selection302.3. Motor Output Connections312.3.1. Brushless Motor Connections322.3.1.1. Powered Motor Phasing332.3.1.2. Unpowered Motor and Feedback Phasing342.3.2. DC Brush Motor Connections352.3.3.1.2. Unpowered Motor Phasing352.3.3.1.2. Unpowered Motor Phasing362.3.3.3. Stepper Motor Connections362.3.3.1.3. Stepper Motor Connections362.3.3.1.5. Stepper Motor Connections362.3.3.1.5. Stepper Motor Connections372.4.1.1. Encoder Inputs382.4.1.1. RS-422 Line Driver Encoder (Standard)392.4.1.2. Analog Encoder Interface402.4.1.3. Encoder Phasing422.4.2. Hall-Effect Inputs442.4.3. Thermistor Input452.4.4. Encoder Fault Input452.4.5.1. End Of Travel Limit Phasing482.4.6. Brake Output492.4.7. Differential Analog Input 0502.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Inputs542.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.2.2. Minimizing Conducted, Radiated, and System Noise 28 2.2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3.1. Brushlees Motor Connections 32 2.3.1.1. Powered Motor Phasing 33 2.3.1.2. Unpowered Motor and Feedback Phasing 34 2.3.2.1.2. Unpowered Motor and Feedback Phasing 34 2.3.2.1. DC Brush Motor Connections 35 2.3.3. Stepper Motor Connections 36 2.3.3. Stepper Motor Connections 36 2.3.3.1. Stepper Motor Phasing 36 2.4.1.0. Encoder Inputs 37 2.4.1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.1.3. Encoder Phasing 42 2.4.2. Hall-Effect Inputs 44 2.4.3. Thermistor Input 45 2.4.4.5. End Of Travel Limit Inputs 47 2.4.5.1. End Of Travel Limit Phasing 48 2.4.6. Brake Output 49 2.5.1. Analog Input 1 52 2.5.2. Analog Output 1 53 2.5.3. Optol-Isolated Outputs 54		
2.2.3. I/O and Signal Wiring Requirements 29 2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3.1. Brushless Motor Connections 32 2.3.1.1. Powered Motor Phasing 33 2.3.1.2. Unpowered Motor and Feedback Phasing 34 2.3.2.1. DC Brush Motor Connections 35 2.3.2.1. DC Brush Motor Connections 35 2.3.3. Stepper Motor Connections 36 2.3.3.1. Stepper Motor Phasing 36 2.4.1. Decoder Inputs 38 2.4.1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.1.3. Encoder Phasing 42 2.4.4.4. Encoder Fault Input 46 2.4.5. End Of Travel Limit Inputs 44 2.4.6. Brake Output 49 2.4.7. Differential Analog Input 0 50 2.5. Digital / Analog Input 1 52 2.5.2. Analog Output 1 53 2.5.3. Opto-Isolated Unputs 54 2.6.1. Position Synchronized Output (PSO)/Laser Firing 58		
2.2.4. Voltage Selection 30 2.3. Motor Output Connections 31 2.3.1. Brushless Motor Connections 32 2.3.1.1. Powered Motor Phasing 33 2.3.1.2. Unpowered Motor and Feedback Phasing 34 2.3.2. DC Brush Motor Connections 35 2.3.2.1. DC Brush Motor Connections 35 2.3.3. Stepper Motor Connections 36 2.3.3. Stepper Motor Phasing 36 2.4. Motor Feedback Connections 37 2.4.1. Encoder Inputs 38 2.4.1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.1.3. Encoder Phasing 42 2.4.2. Hall-Effect Inputs 44 2.4.3. Thermistor Input 45 2.4.4. Encoder Fault Input 46 2.4.5. End Of Travel Limit Inputs 47 2.4.5. I. End Of Travel Limit Phasing 48 2.4.6. Brake Output 49 2.4.7. Differential Analog Input 0 50 2.5. Digital / Analog IO Connections 51 2.5.1. Analog Input 1 52 2.5.2. Analog Output 1 53 2.5.3. Opto-Isolated O		
2.3. Motor Output Connections 31 2.3.1. Brushless Motor Connections 32 2.3.1.1. Powered Motor Phasing 33 2.3.1.2. Unpowered Motor and Feedback Phasing 34 2.3.2. DC Brush Motor Connections 35 2.3.2.1. DC Brush Motor Connections 35 2.3.2.1. DC Brush Motor Phasing 36 2.3.3. Stepper Motor Connections 36 2.3.3. Stepper Motor Connections 36 2.3.3. Stepper Motor Connections 37 2.4. Decoder Inputs 38 2.4.1. Encoder Inputs 38 2.4.1.2. Analog Encoder Interface 40 2.4.1.3. Encoder Phasing 42 2.4.4. Encoder Phasing 42 2.4.5. End Of Travel Limit Input 45 2.4.6. Brake Output 49 2.4.7. Differential Analog Input 0 50 2.5. Digital / Analog IO Connections 51 2.5.2. Analog Output 1 53 2.5.3. Opto-Isolated Outputs 54 2.5.4. Opto-Isolated Outputs 56 2.6.1. Position Synchronized Output (PSO)/Laser Firing 60		
2.3.1. Brushless Motor Connections322.3.1.1. Powered Motor Phasing332.3.1.2. Unpowered Motor and Feedback Phasing342.3.2. DC Brush Motor Connections352.3.2.1. DC Brush Motor Phasing352.3.3. Stepper Motor Connections362.3.3. Stepper Motor Connections362.4. Motor Feedback Connections372.4.1. Encoder Inputs382.4.1. Encoder Inputs382.4.1.2. Analog Encoder Interface402.4.1.3. Encoder Phasing422.4.2. Hall-Effect Inputs442.4.3. Thermistor Input452.4.4. Encoder Fault Input462.4.5. End Of Travel Limit Phasing482.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6. Aux Encoder582.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.3.1.1. Powered Motor Phasing332.3.1.2. Unpowered Motor and Feedback Phasing342.3.2. DC Brush Motor Connections352.3.2.1. DC Brush Motor Phasing352.3.3. Stepper Motor Connections362.3.3. Stepper Motor Phasing362.4. Motor Feedback Connections372.4.1. Encoder Inputs382.4.1.1. RS-422 Line Driver Encoder (Standard)392.4.1.2. Analog Encoder Interface402.4.3. Thermistor Input452.4.4. Encoder Fault Inputs442.4.5. End Of Travel Limit Inputs472.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Apto-Isolated Inputs542.5.4. Opto-Isolated Inputs562.6. Aux Encoder582.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.3.1.2. Unpowered Motor and Feedback Phasing.342.3.2. DC Brush Motor Connections.352.3.2.1. DC Brush Motor Phasing.352.3.3. Stepper Motor Connections.362.3.3.1. Stepper Motor Phasing.362.4. Motor Feedback Connections.372.4.1. Encoder Inputs.382.4.1.1. RS-422 Line Driver Encoder (Standard).392.4.1.2. Analog Encoder Interface.402.4.1.3. Encoder Phasing.422.4.2. Hall-Effect Inputs.442.4.3. Thermistor Input.452.4.4. Encoder Fault Input.462.4.5. End Of Travel Limit Inputs.472.4.5. 1. End Of Travel Limit Phasing.482.4.6. Brake Output.492.4.7. Differential Analog Input 0.502.5. Digital / Analog IO Connections.512.5.1. Analog Input 1.522.5.2. Analog Output 1.532.5.3. Opto-Isolated Outputs.542.5.4. Opto-Isolated Inputs.562.6. Aux Encoder.582.6.1. Position Synchronized Output (PSO)/Laser Firing.60		
2.3.2. DC Brush Motor Connections352.3.2.1. DC Brush Motor Phasing352.3.3. Stepper Motor Connections362.3.3.1. Stepper Motor Phasing362.4. Motor Feedback Connections372.4.1. Encoder Inputs382.4.1. RS-422 Line Driver Encoder (Standard)392.4.1.2. Analog Encoder Interface402.4.1.3. Encoder Phasing422.4.2. Hall-Effect Inputs442.4.3. Thermistor Input452.4.4. Encoder Fault Input462.4.5. End Of Travel Limit Inputs472.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog Io Connections512.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.3.2.1. DC Brush Motor Phasing 35 2.3.3. Stepper Motor Connections 36 2.3.3.1. Stepper Motor Phasing 36 2.4.1. Stepper Motor Phasing 37 2.4. Motor Feedback Connections 37 2.4. Motor Feedback Connections 37 2.4. Notor Feedback Connections 37 2.4. Notor Feedback Connections 37 2.4.1. Encoder Inputs 38 2.4.1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.1.3. Encoder Phasing 42 2.4.2. Hall-Effect Inputs 44 2.4.3. Thermistor Input 45 2.4.4. Encoder Fault Input 46 2.4.5. End Of Travel Limit Inputs 47 2.4.5. End Of Travel Limit Phasing 48 2.4.6. Brake Output 49 2.4.7. Differential Analog Input 0 50 2.5. Digital / Analog IO Connections 51 2.5.1. Analog Input 1 52 2.5.2. Analog Output 1 53 2.5.3. Opto-Isolated Outputs 54 2.5.4. Opto-Isolated Inputs 54 2.6.1. Position Synchronized Output (PSO)/Lase	· · ·	
2.3.3. Stepper Motor Connections362.3.3.1. Stepper Motor Phasing362.4. Motor Feedback Connections372.4.1. Encoder Inputs382.4.1.1. RS-422 Line Driver Encoder (Standard)392.4.1.2. Analog Encoder Interface402.4.1.3. Encoder Phasing422.4.2. Hall-Effect Inputs442.4.3. Thermistor Input452.4.4. Encoder Fault Input462.4.5. End Of Travel Limit Inputs472.4.5.1. End Of Travel Limit Phasing482.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6. Aux Encoder582.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.3.3.1. Stepper Motor Phasing 36 2.4. Motor Feedback Connections 37 2.4.1. Encoder Inputs 38 2.4.1.1. RS-422 Line Driver Encoder (Standard) 39 2.4.1.2. Analog Encoder Interface 40 2.4.1.3. Encoder Phasing 42 2.4.2. Hall-Effect Inputs 44 2.4.3. Thermistor Input 45 2.4.4. Encoder Fault Input 46 2.4.5. End Of Travel Limit Inputs 47 2.4.5.1. End Of Travel Limit Phasing 48 2.4.6. Brake Output 49 2.4.7. Differential Analog Input 0 50 2.5. Digital / Analog IO Connections 51 2.5.2. Analog Output 1 53 2.5.3. Opto-Isolated Outputs 54 2.5.4. Opto-Isolated Inputs 56 2.6.1. Position Synchronized Output (PSO)/Laser Firing 60		
2.4. Motor Feedback Connections372.4.1. Encoder Inputs382.4.1.1. RS-422 Line Driver Encoder (Standard)392.4.1.2. Analog Encoder Interface402.4.1.3. Encoder Phasing422.4.2. Hall-Effect Inputs442.4.3. Thermistor Input452.4.4. Encoder Fault Input462.4.5. End Of Travel Limit Inputs472.4.5. I. End Of Travel Limit Phasing482.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.4.1. Encoder Inputs382.4.1.1. RS-422 Line Driver Encoder (Standard)392.4.1.2. Analog Encoder Interface402.4.1.3. Encoder Phasing422.4.2. Hall-Effect Inputs442.4.3. Thermistor Input452.4.4. Encoder Fault Input462.4.5. End Of Travel Limit Inputs472.4.5.1. End Of Travel Limit Phasing482.4.6. Brake Output492.4.7. Differential Analog Input 0502.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.4.1.1. RS-422 Line Driver Encoder (Standard).392.4.1.2. Analog Encoder Interface.402.4.1.3. Encoder Phasing.422.4.2. Hall-Effect Inputs.442.4.3. Thermistor Input.452.4.4. Encoder Fault Input.462.4.5. End Of Travel Limit Inputs.472.4.5.1. End Of Travel Limit Phasing.482.4.6. Brake Output.492.4.7. Differential Analog Input 0.502.5. Digital / Analog IO Connections.512.5.1. Analog Uput 1.522.5.2. Analog Output 1.532.5.3. Opto-Isolated Outputs.542.5.4. Opto-Isolated Inputs.562.6. Aux Encoder.582.6.1. Position Synchronized Output (PSO)/Laser Firing.60		
2.4.1.2. Analog Encoder Interface402.4.1.3. Encoder Phasing422.4.2. Hall-Effect Inputs442.4.3. Thermistor Input452.4.4. Encoder Fault Input462.4.5. End Of Travel Limit Inputs472.4.5.1. End Of Travel Limit Phasing482.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6. Aux Encoder582.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.4.1.3. Encoder Phasing422.4.2. Hall-Effect Inputs442.4.3. Thermistor Input452.4.4. Encoder Fault Input462.4.5. End Of Travel Limit Inputs472.4.5.1. End Of Travel Limit Phasing482.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6. Aux Encoder582.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.4.2. Hall-Effect Inputs.442.4.3. Thermistor Input.452.4.4. Encoder Fault Input.462.4.5. End Of Travel Limit Inputs.472.4.5.1. End Of Travel Limit Phasing.482.4.6. Brake Output.492.4.7. Differential Analog Input 0.502.5. Digital / Analog IO Connections.512.5.1. Analog Input 1.522.5.2. Analog Output 1.532.5.3. Opto-Isolated Outputs.542.6.1. Position Synchronized Output (PSO)/Laser Firing.60		
2.4.3. Thermistor Input452.4.4. Encoder Fault Input462.4.5. End Of Travel Limit Inputs472.4.5.1. End Of Travel Limit Phasing482.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6. Aux Encoder582.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.4.4. Encoder Fault Input462.4.5. End Of Travel Limit Inputs472.4.5.1. End Of Travel Limit Phasing482.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6. Aux Encoder582.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.4.5. End Of Travel Limit Inputs472.4.5.1. End Of Travel Limit Phasing482.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6. Aux Encoder582.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.4.5.1. End Of Travel Limit Phasing482.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6. Aux Encoder582.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.4.6. Brake Output492.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6. Aux Encoder582.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.4.7. Differential Analog Input 0502.5. Digital / Analog IO Connections512.5.1. Analog Input 1522.5.2. Analog Output 1532.5.3. Opto-Isolated Outputs542.5.4. Opto-Isolated Inputs562.6. Aux Encoder582.6.1. Position Synchronized Output (PSO)/Laser Firing60		
2.5. Digital / Analog IO Connections .51 2.5.1. Analog Input 1 .52 2.5.2. Analog Output 1 .53 2.5.3. Opto-Isolated Outputs .54 2.5.4. Opto-Isolated Inputs .56 2.6. Aux Encoder .58 2.6.1. Position Synchronized Output (PSO)/Laser Firing .60		
2.5.1. Analog Input 1.522.5.2. Analog Output 1.532.5.3. Opto-Isolated Outputs.542.5.4. Opto-Isolated Inputs.562.6. Aux Encoder.582.6.1. Position Synchronized Output (PSO)/Laser Firing.60		
2.5.2. Analog Output 1.532.5.3. Opto-Isolated Outputs.542.5.4. Opto-Isolated Inputs.562.6. Aux Encoder.582.6.1. Position Synchronized Output (PSO)/Laser Firing.60		
2.5.3. Opto-Isolated Outputs.542.5.4. Opto-Isolated Inputs.562.6. Aux Encoder.582.6.1. Position Synchronized Output (PSO)/Laser Firing.60		
2.5.4. Opto-Isolated Inputs		
2.6. Aux Encoder		
2.6.1. Position Synchronized Output (PSO)/Laser Firing60		

2.8. Ext Drive Connector 2.9. RS-232 Interface	64
2.10. PC Configuration and Operation Information	
Chapter 3: Options	67
3.1. Emergency Stop (ESTOP1,2,3)	
3.2. Joystick Interface	
Chapter 4: Maintenance	
4.1. Power Board Assembly	
4.2. Preventative Maintenance	77
Appendix A: Warranty and Field Service	79
Appendix B: Revision History	81
Index	83

List of Figures

Figure 1-1:	Chassis Layout			
Figure 1-2:	Functional Diagram			
Figure 1-3:	Dimensions (4 Axis Version)			
Figure 1-4:	Dimensions (8 Axis Version)			
Figure 2-1:	Power and Control Connections	.26		
Figure 2-2:	Power Switch	. 26		
Figure 2-3:	AC Line Filter (UFM-ST)	. 28		
Figure 2-4:	Voltage Selection Switch Access	.30		
Figure 2-5:	Motor Output Connections	.31		
Figure 2-6:	Brushless Motor Configuration	. 32		
Figure 2-7:	Encoder and Hall Signal Diagnostics	. 33		
Figure 2-8:	Motor Phasing Oscilloscope Example	. 34		
Figure 2-9:	Brushless Motor Phasing Goal	. 34		
Figure 2-10:	DC Brush Motor Configuration			
Figure 2-11:	Clockwise Motor Rotation	.35		
Figure 2-12:	Stepper Motor Configuration			
Figure 2-13:	Clockwise Motor Rotation			
Figure 2-14:	Line Driver Encoder Interface	. 39		
Figure 2-15:	Analog Encoder Phasing Reference Diagram			
Figure 2-16:	Analog Encoder Signals			
Figure 2-17:	Encoder Phasing Reference Diagram (Standard)			
Figure 2-18:	Position Feedback in the Diagnostic Display			
Figure 2-19:	Hall-Effect Inputs			
Figure 2-20:	Thermistor Input			
Figure 2-21:	Encoder Fault Interface Input			
Figure 2-22:	End of Travel Limit Inputs			
Figure 2-23:	Limit Input Diagnostic Display			
Figure 2-24:	Analog Input 0			
Figure 2-25:	Analog Input 1			
Figure 2-26:	Analog Output 1			
Figure 2-27:	Outputs Connected in Current Sourcing Mode			
Figure 2-28:	Outputs Connected in Current Sinking Mode			
Figure 2-29:	Inputs Connected to a Current Sourcing Device			
Figure 2-30:	Inputs Connected to a Current Sinking Device			
Figure 2-31:	Auxiliary Encoder Channel			
Figure 2-32:	PSO Interface			
Figure 2-33:	Ethernet Interface			
Figure 2-34:	Ethernet Connection			
Figure 2-35:	Aeronet Interface			
Figure 2-36:	RS-232 Interface			
Figure 3-1:	ESTOP Option Interface			
Figure 3-2: Figure 3-3:	ESTOP1 ESTOP2			
Figure 3-3. Figure 3-4:	ESTOP2 ESTOP3			
Figure 3-4. Figure 3-5:	Joystick Interface			
Figure 3-5: Figure 3-6:	Joystick Interface			
Figure 3-0.	Power Board			
i iguie 4 -1.		0		

List of Tables

Table 1-1:	Feature Summary	. 14	
Table 1-2:	Chassis Electrical Specifications		
Table 1-3:	Servo Amplifier Electrical Specifications (MP)		
Table 1-4:	Linear Amplifier Electrical Specifications (ML)		
Table 1-5:	Unit Weight		
Table 1-6:	Drive and Software Compatibility		
Table 2-1:	Main AC Power Input Voltages and Current Requirements		
Table 2-2:	AC Power Wiring Specifications		
Table 2-3:	UFM-ST Electrical Specifications		
Table 2-4:	I/O and Signal Power Wiring Specifications		
Table 2-5:	AC Voltage Selector Switch Settings for 115 VAC or 230 VAC Option		
Table 2-6:	AC Voltage Selector Switch Settings for 100 VAC or 200 VAC Option		
Table 2-7:	Motor Power Output Connector Pin Assignment		
Table 2-8:	Motor Power Output Mating Connector		
Table 2-9:	Motor Feedback Connector Pin Assignment		
Table 2-10:	Encoder Pin Assignment		
Table 2-11:	Encoder Specifications		
Table 2-12:	Analog Encoder Specifications		
Table 2-13:	Hall-Effect Feedback Pin Assignment		
Table 2-14:	Thermistor Interface Pin Assignment		
Table 2-15:	Encoder Fault Pin Assignment		
Table 2-16:	End of Travel Limit Inputs Pin Assignment		
Table 2-17:	Brake Output Pin Assignment		
Table 2-18:	Relay Specifications		
Table 2-10:	Differential Analog Input 0 Specifications		
Table 2-19.	Differential Analog Input 0 Pin Assignment		
Table 2-20.	Digital / Analog IO Connector Pin Assignment		
Table 2-21:	Analog Input 1 Specifications		
Table 2-22:	Analog Inputs Connector Pin Assignment		
Table 2-23.	Analog Output Specifications (TB102 B)		
Table 2-24.			
Table 2-25.	Analog Output Connector Pin Assignment		
	Opto-Isolated Output Connector Pin Assignment		
Table 2-27:	Output Specifications		
Table 2-28: Table 2-29:	Digital Input Specifications		
	Opto-Isolated Input Connector Pin Assignment		
Table 2-30:	Aux Encoder Specifications		
Table 2-31:	Auxiliary Encoder Channel Pin Assignment		
Table 2-32:	PSO Specifications		
Table 2-33:	Ethernet Cable Listing		
Table 2-34:	Aeronet Cable		
Table 2-35:	RS-232 Connector Pin Assignment		
Table 3-1:	Options and Capabilities		
Table 3-2:	ESTOP Option Mating Connector		
Table 3-3:	ESTOP Safety Ratings		
Table 3-4:	Relay Specifications		
Table 3-5:	Joystick Interface Connector Pin Assignment		
Table 4-1:	Component Select		
Table 4-2:	Preventative Maintenance	.77	

EU Declaration of Conformity

Manufacturer	Aerotech, Inc.
Address	101 Zeta Drive
	Pittsburgh, PA 15238-2811
	USA
Product	Epaq MR
Model/Types	All

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following Directive(s):

2014/35/EU	Low Voltage Directive LVD
2006/42/EC	Safety of Machinery
2011/65/EU	RoHS 2 Directive

and has been designed to be in conformity with the applicable requirements of the following documents when installed and used in accordance with the manufacturer's supplied installation instructions.

EN 61010-1:2010 ISO 13849-1 & -2 Safety requirements for electrical equipment Safety of Machinery - General Principals of Design

Name Position Location

(llog Rohrenberg / Alex Weibel

Engineer Verifying Compliance Pittsburgh, PA

Agency Approvals

Aerotech, Inc. Model Epaq MR Drive Racks have been tested and found to be in accordance to the following listed Agency Approvals:

Approval / Certification:	CUSNRTL
Approving Agency:	TUV SUD America Inc.
Certificate #:	U8 13 10 68995 012
Standards:	UL 61010-1:2004; CAN/CSA-C22.2 No. 61010-1:2004; EN 61010- 1:2010

Safety Procedures and Warnings

The following statements apply wherever the Warning or Danger symbol appears within this manual. Failure to observe these precautions could result in serious injury to those individuals performing the procedures and/or damage to the equipment.

DANGER: This product contains potentially lethal voltages. To reduce the possibility of electrical shock, bodily injury, or death the following precautions must be followed.

- 1. Ensure that all electrical power switches are in the off position when servicing the equipment.
- 2. Disconnect electrical power before servicing equipment.
- 3. Disconnect electrical power before performing any wiring.
- 4. Access to the Epaq MR and component parts must be restricted while connected to a power source.

- 5. Residual voltages greater than 60V may be present inside Epaq MR chassis for longer than 10 seconds after power has been disconnected.
- 6. To minimize the possibility of electrical shock and bodily injury, extreme care must be exercised when any electrical circuits are in use. Suitable precautions and protection must be provided to warn and prevent persons from making contact with live circuits.
- 7. Install the Epaq MR inside a rack or enclosure.
- 8. Do not connect or disconnect any electrical components or connecting cables while connected to a power source.
- 9. All components must be properly grounded in accordance with local electrical safety requirements.
- 10. Operator safeguarding requirements must be addressed during final integration of the product.

WARNING: To minimize the possibility of electrical shock, bodily injury or death the following precautions must be followed.

- 1. Use of this equipment in ways other than described by this manual can cause personal injury or equipment damage.
- 2. Moving parts can cause crushing or shearing injuries. Access to all stage and motor parts must be restricted while connected to a power source.
- 3. Cables can pose a tripping hazard. Securely mount and position all system cables to avoid potential hazards.

- 4. Do not expose this product to environments or conditions outside of the listed specifications. Exceeding environmental or operating specifications can cause damage to the equipment.
- 5. If the product is used in a manner not specified by the manufacturer, the protection provided by the product can be impaired and result in damage, shock, injury, or death.
- 6. Operators must be trained before operating this equipment.
- 7. All service and maintenance must be performed by qualified personnel.
- 8. This product is intended for light industrial manufacturing or laboratory use. Use of this product for unintended applications can result in injury and damage to the equipment.

This page intentionally left blank.

Quick Installation Guide

This chapter describes the order in which connections and settings should typically be made to the Epaq MR. If a custom interconnection drawing was created for your system (look for a line item on your Sales Order under the heading "Integration"), that drawing can be found on your installation device.

There are four standard connections that must be made to the Epaq MR.

Figure 1: Quick Start Connections

Quick Start Summary

Торіс	Section
AC Power	Section 2.2.1. AC Power Connections
PC Communication	Section 2.7. Communications Connector
Motor Power	Section 2.3. Motor Output Connections
Motor Feedback	Section 2.4. Motor Feedback Connections

This page intentionally left blank.

Chapter 1: Introduction

Aerotech's Epaq MR is a 3U height, 19" wide, rack-mountable, intelligent drive chassis, that consists of up to eight ultra-compact PWM and Linear network digital drives providing up to eight axes of motion. Each drive provides deterministic behavior, auto-identification, and easy software setup. High performance double precision floating point DSP controls the digital PID and current loops. All system configuration is done using software-settable parameters, including control loop gains and system safety functions.

Communicate with the PC with a standard commercial Ethernet network connection. I/O options are configurable per axis and include a 16 channel digital I/O interface (8 inputs and 8 outputs), one analog input, one analog output, and a single axis Position Synchronized Output (PSO) signal. Other features and options available with the MR drive chassis include: an external joystick connection port, integral encoder resolution multiplication, and integral emergency stop components.

NOTE: The Epaq MR can contain a mix of multiple discrete ML and MP drives. When using the Ensemble software, the drives inside the Epaq MR will appear as if they were individual drives on the network. Motion and I/O commands on axes within the Epaq MR are programmed in the same manner as would be done for discrete units.

Table 1-1: Feature Summary

Standard Features		
 One 16-bit differential a Dedicated 5-24 V Emer Dedicated Hall inputs (Dedicated over travel a Calibration (refer to the Camming (refer to the E 	gency Stop sense input 3 per axis)	
Options		
-10	 One 16-bit analog output (±10 V) One 12- or 16-bit differential analog input (±10 V) One fail-safe brake or user relay output 8 optically isolated logic inputs (5 - 24 VDC), may be connected in current sourcing or sinking mode 8 optically isolated logic outputs (5 - 24 VDC), user defined as current sourcing or sinking Auxiliary encoder input channel RS-422 differential PSO signal 	
-MXU (option on the MP)	x4,096 encoder interpolation for sine/cosine encoders	
-MXU (option on the ML)	x4,096 encoder interpolation for sine/cosine encoders	
-MXH (option on the ML)	x65,536 encoder interpolation for sine/cosine encoders	

The following block diagram illustrates the features and options of the Epaq MR.

Figure 1-2: Functional Diagram

1.1. Electrical Specifications

The electrical specifications for the Epaq MR drive chassis are listed in Table 1-2 and the electrical specifications for the servo amplifiers in Table 1-3 and Table 1-4.

NOTE: Specifications represent the maximum capability of a feature. Other system constraints may result in significantly less performance. This is particularly applicable to the motor output specifications. The motor output specifications are affected by the Bus supply, the number of axes that are operating at the same time, the type of motion, the AC Line voltage, and motor requirements.

Description		Specifications			
Bus Voltage Options		4-Axis		8-Axis	
		Unipolar	Bipolar	Unipolar	Bipolar
		40 LP@ 300W	10B @ 400W	40LP @ 500W	10B @ 400W
		80 LP @ 300W	20B @ 500W	40LP @ 500W	20B @ 500W
		40 @ 600W	30B @ 500W	40LP @1000W	30B @ 500W
		80 @ 600W	40B @ 600W	40LP @1000W	40B @ 1000W
	100 VAC		10 A Ma	aximum	
Input	115 VAC		10 A Ma	aximum	
Current	200 VAC		6 A Ma	ximum	
	230 VAC	5 A Maximum			
Inrush Currer	nt	100 A @ 254 VAC			
Leakage Cur	rent	<1/5 mA @ 60 Hz / 254 VAC			
		AC input (factory configured): AC Hi, AC Lo, Earth Ground (⊕),			
		• 100 VAC (90-112 VAC, 49-63 Hz)			
AC Power In	put	• 115 VAC (103-127 VAC, 49-63 Hz)			
		• 200 VAC (180-224 VAC, 49-63 Hz)			
		 230 VAC (207-254 VAC, 49-63 Hz) 			
Auxilian Dowar Outputa		+5 V is provided on all axis feedback connectors for encoder, Hall, and limit			
Auxiliary Power Outputs		power.			
Protection		Power switch breaker (10 Amps, Supplemental Protection only).			
		Fuses on motor bus supply transformer.			
		 Bus supply inrush current limit during power-on. 			
Indicator (Po	tor (Power) Power switch contains a power-on indicator.				

Table 1-2: Chassis Electrical Specifications

Aerotech doesn't specify the input current or power to the drives because it is dependent on the amount of real power being delivered to the drive (refer to Section 1.1.1.).

Table 1-3:	Servo Amplifier Electrical Specifications (MP)
------------	--

		MP 10	
	Input Voltage	10-80 VDC	
Motor Supply	Input Current (Continuous)	5 A _{rms}	
Control Supply	Input Voltage	24-80 VDC (±10%)	
	Input Current	1 A max	
Output Voltage (1)		10-80 VDC	
Peak Output Curre	nt (1 second)	10 A	
Continuous Output Current		5 A	
Power Amplifier Bandwidth		2500 Hz maximum (software selectable)	
Power Amplifier Efficiency		85% - 95% ⁽²⁾	
PWM Switching Frequency		20 kHz	
Minimum Load Inductance		0.1 mH @ 80 VDC	
User Power Supply Output		5 VDC (@ 500 milliamps)	
Modes of Operation		Brushless; Brush; Stepper	
Protective Features		Output short circuit; Peak over current, DC bus over voltages; RMS over current; Over temperature; Control power supply under voltage; Power stage bias supply under voltage	
Isolation		Optical and transformer isolation between control and power stages.	
1. AC input voltage and 2. Dependent on total o		reases with increasing output power.	

Description		ML 10	
	Input Voltage	±40 VDC (max)	
Motor Supply	Input Current (continuous)	5 A	
	Input Current (peak)	10 A	
Control Supply	Input Voltage	24 VDC typical (18-36 VDC)	
Control Supply	Input Current	700 mA (max)	
Output Voltage (1)		±38V @ 10 A	
Peak Output Current ⁽²⁾		10	
Continuous Output Current ⁽²⁾		5	
Power Amplifier Bandwidth		2500 Hz maximum (software selectable)	
Minimum Load Resistance		0.5 Ω	
Output Impedance		0.2 Ω (each phase)	
User Power Supp	ly Output	5 VDC (@ 500 mA)	
Modes of Operation	n	Brushless; Brush; Stepper	
Protective Features		Peak current limit; Over temperature; RMS current limit; Dynamic power dissipation limit	
Isolation		Isolation between control and power stages.	
1. Load Dependent	s output current is load depend	lent (the amplifier will limit its output current based on motor speed and	

Table 1-4: Linear Amplifier Electrical Specifications (ML)

2. Peak and continuous output current is load dependent (the amplifier will limit its output current based on motor speed and motor resistance).

1.1.1. System Power Requirements

The following equations can be used to determine total system power requirements. The actual power required from the mains supply will be the combination of actual motor power (work), motor resistance losses, and efficiency losses in the power electronics or power transformer.

For switching amplifier types:

An EfficiencyFactor of approximately 90% should be used in the following equations.

Brushless Motor	
Output Power	
Rotary Motors	Pout [W] = Torque [N⋅m] * Angular velocity[rad/sec]
Linear Motors	Pout [W] = Force [N] * Linear velocity[m/sec]
Rotary or Linear Motors	Pout [W] = Bemf [V] * I(rms) * 3

Ploss = 3 * I(rms)^2 * R(line-line)/2 Pin = SUM (Pout + Ploss) / EfficiencyFactor

DC Brush Motor

```
Pout [W] = Torque [N·m] * Angular velocity[rad/sec]

Ploss = I(rms)^2 * R

Pin = SUM (Pout + Ploss) / EfficiencyFactor
```

For linear amplifier types:

An EfficiencyFactor of approximately 50% should be used in the following equations.

Linear Motor

Pdiss[W] = MotorCurrentPeak[A] * TotalBusVoltage[V] * 3 / 2 Pin = SUM (Pdiss) / EfficiencyFactor

1.2. Mechanical Specifications

The Epaq MR must be installed in a rack mount console to comply with safety standards. Mount the Epaq MR so free airflow is available at the rear of the chassis. Allowance must also be made for the rear panel connections and cables.

Figure 1-3: Dimensions (4 Axis Version)

All Epaq MR chassis's are built to the user's specifications causing a variation in actual product weight.

Table 1-5: Unit Weight

Description	Weight	
Chassis Weight (typical)	23 kg	

1.3. Environmental Specifications

The environmental specifications for the Epaq MR are listed below.

Ambient Temperature	Operating: 5° to 40°C (41° to 104° F)	
	Storage: -20° to 70°C (-4° to 158° F)	
Humidity	Maximum relative humidity is 80% for temperatures up to 31°C.	
	Decreasing linearly to 50% relative humidity at 40°C. Non condensing.	
Altitude	Up to 2000 meters.	
Pollution	Pollution degree 2 (normally only non-conductive pollution).	
Use	Indoor use only.	
Audible Noise	71 db at 1 meter (rear fan and side fan)	
	77 db at 1 meter (rear fan and side fan)	

1.4. Drive and Software Compatibility

The following table lists the available drives and which version of the software first supported the drive. Drives that list a specific version number in the **Last Software Version** column will not be supported after the listed version.

Drive Type	Firmware Revision	First Software Version	Last Software Version
CL	-	1.01	5.02
CL	A	2.55	5.02
СР	A	1.00	Current
CF	В	2.54	Current
Enog	-	1.00	Current
Epaq	A	2.55	Current
Epaq MR with ML drives	-	3.00	Current
Epoc MP with MD drives	-	1.00	Current
Epaq MR with MP drives	A	2.55	Current
HLe	-	2.51	Current
HPe	-	2.51	Current
LAB	-	4.04	Current
ML	-	3.00	Current
MP	-	1.00	Current
	A	2.55	Current
QDe/QL/QLe	-	5.01	Current
QLAB	-	4.07	Current

 Table 1-6:
 Drive and Software Compatibility

This page intentionally left blank.

Chapter 2: Installation and Configuration

2.1. Unpacking the Chassis

Visually inspect the container of the Epaq MR for any evidence of shipping damage. If any such damage exists, notify the shipping carrier immediately.

Remove the packing list from the Epaq MR container. Make sure that all the items specified on the packing list are contained within the package.

DANGER: Cables should not be connected to or disconnected from the Epaq MR drive chassis while power is applied, nor should any drive modules be removed or inserted into it with power applied. Doing so may cause damage to the system or its components.

A documentation package is provided with the Epaq MR either in a large manilla envelope or on the installation device containing manuals, interconnection drawings, and other documentation pertaining to the Epaq MR system. This information should be saved for future reference. Additional information about the Epaq MR system is provided on the Serial and Power labels that are placed on the Epaq MR chassis.

The system serial number label, located on the side panel closest to the AC power inlet, contains important information such as the:

- Customer order number (please provide this number when requesting product support)
- Drawing number
- System part number

The AC power input label is located beside the AC power inlet and contains the factory configured AC power requirements.

For label locations, refer to Figure 2-1

2.2. Electrical Installation

Motor, power, control and position feedback cable connections are made to the rear of the Epaq MR.

Power Switch / Circuit Breaker -

All low voltage connections must be made using cables/wires sized for the maximum currents that will be carried. Insulation on these cables/wires must be rated at 300 V if this wiring can come into contact with wiring operating above 100 V (AC Power Input and Motor wiring). Low voltage wiring should not be bundled with AC and motor wiring to minimize signal disturbances due to EMI interference and coupling.

NOTE: The machine integrator, OEM, or end user is responsible for meeting the final protective grounding requirements of the system.

2.2.1. AC Power Connections

AC input power to the Epaq MR drive chassis is applied to the AC power receptacle that is located on the rear panel. The power cord connected to this receptacle also provides the protective earth ground connection and may serve as a Mains disconnect. The main power switch located on the front panel of the Epaq MR drive chassis also functions as a 10 A breaker (supplementary protection only) for the incoming AC power.

The Epaq MR drive chassis is factory configured for one of four specified input voltages. The factory configured AC input voltages, along with the current requirements for the Epaq MR drive chassis, are listed in Table 2-1.

• • •	•
AC Input Voltage	Input Amps (maximum continuous)
100 VAC 50/60 Hz	10 A
115 VAC 50/60 Hz	10 A
200 VAC 50/60 Hz	6 A
230 VAC 50/60 Hz	5 A

Table 2-1: Main AC Power Input Voltages and Current Requirements

The AC power cord/wiring specifications are listed in Table 2-2. Environmental conditions may necessitate the need to meet additional AC wiring requirements or specifications. AC wiring should not be bundled with signal wiring to minimize EMI coupling and interference.

Table 2-2: AC Power Wiring Specifications

Specification	Value	
Cord/Wire Rating	300 V	
Minimum Current Capacity	10 A	
Temperature Rating (Insulation) ⁽¹⁾ 80°C		
1. The insulation rating for the AC power wiring must be appropriately rated for the operating environment.		

Refer to Figure 2-1 for label locations.

2.2.2. Minimizing Conducted, Radiated, and System Noise

To reduce electrical noise, observe the following wiring techniques.

- 1. Use shielded cable to carry the motor current and tie the shield to earth ground.
- 2. Use a cable with sufficient insulation. This will reduce the capacitive coupling between the leads that, in turn, reduces the current generated in the shield wire.
- Motor cables must be physically separated from low level cables carrying FireWire, encoder, and I/O signals.
- 4. User connections to the product must be made using shielded cables with metal D-style connectors and back shells. The shield of the cables must be connected to the metal back shell in order for the product to conform to the radiated emission standards.
- 5. The Epaq MR is a component designed to be integrated with other electronics. EMC testing must be conducted on the final product configuration.

The Epaq MR can generate conducted (AC line) and radiated noise when configured with MP drives. Minimize conducted emissions by using line filters. A line filter should be located as close to the drive as possible for maximum effectiveness. Aerotech recommends Schaffner FN2080-10-06 (Aerotech P/N: ECZ01449) or Aerotech's UFM-ST product (refer to Figure 2-3).

Specification	Value	
Input Voltage Range	0-240 VAC	
Output Voltage Range	0-240 VAC	
Maximum Continuous Current	8 A _{rms} with convection cooling 10 A _{rms} with forced air cooling	
Frequency	50/60 Hz	
Phases	Single Phase	
Leakage Current	1.1 mA (max)	
Fuse Protection	Internal 10 A fuses on AC1 and AC2 inputs	

Table 2-3: UFM-ST Electrical Specifications

Figure 2-3: AC Line Filter (UFM-ST)

2.2.3. I/O and Signal Wiring Requirements

The I/O, communication, and encoder feedback connections are typically very low power connections. In some applications, especially when there are significant wire distances, a larger wire size may be required to reduce the voltage drop that occurs along the wire. This increase may be necessary in order to keep the voltage within a specified range at a remote point.

Low voltage and high voltage wires should be kept physically separated so that they cannot contact one another. This reduces the risk of electric shock and improves system performance.

Connection	Specification	Value
	Cable/Wire Rating ⁽¹⁾	300 V
Signal Wiring	Minimum Current Capacity	.25 A
	Temperature Rating (Insulation) ⁽²⁾	80°C
	Cable/Wire Rating ⁽¹⁾	300 V
-	Minimum Current Capacity ⁽³⁾	1 A
	Temperature Rating (Insulation) ⁽²⁾	80°C

 Table 2-4:
 I/O and Signal Power Wiring Specifications

 $1 \ge 30$ V if the wiring is **not** in close proximity to wiring operating at voltages above 60 V.

Insulation rating will need to be rated for the higher voltage if the wiring is in proximity to wiring operating at voltages above 60 V.
 Larger gauge wire may be required to minimize voltage drop due to voltage (IR) loss in the cable.

2.2.4. Voltage Selection

You can reconfigure the transformers primary windings to support different AC line voltages by changing the Voltage Selection switches that are located on the left side of the chassis. The Voltage Selector can only be used with transformer-derived bus voltages. This Voltage Selector function should not be changed when using off-line supplies.

If you change the Voltage Selector settings, you must also update the AC power label located next to the AC inlet to reflect the new settings.

DANGER: Disconnect Mains power before changing the voltage selector settings.

WARNING: The Voltage Selector must be configured to match the AC line voltage. You could damage the unit if the Voltage Selector is set for the incorrect AC line voltage.

For systems ordered with 115VAC (-A) or 230VAC (-B) input voltage:

Table 2-5: AC Voltage Selector Switch Settings for 115 VAC or 230 VAC Option

Input Voltage	Switch 1 Position	Switch 2 Position
115 VAC	DOWN	DOWN
230 VAC	UP	UP

For systems ordered with 100VAC (-C) or 200VAC (-D) input voltage:

Table 2-6: AC Voltage Selector Switch Settings for 100 VAC or 200 VAC Option

Input Voltage	Switch 1 Position	Switch 2 Position
100 VAC	DOWN	DOWN
200 VAC	UP	UP

NOTE: The Voltage Selection switches will be partially hidden if you purchased the MR with the - SLIDE option.

Figure 2-4: Voltage Selection Switch Access

2.3. Motor Output Connections

The Epaq MR can be used to drive three motor types: Brushless, DC Brush, and Stepper motors.

The DC brush, brushless, and stepper motor connections are made to the 5-pin high power "D" style motor power connectors (Axis 1-8) that are located on the rear panel. The pin assignments for these connectors are shown in Table 2-7.

Figure 2-5: Motor Output Connections

Pin	Description	Wire Size
1	Brushless Phase A Motor Power / DC Brush + / Stepper	1.3 mm ² (#16 AWG)
2	Brushless Phase B Motor Power / DC Brush - / Stepper	1.3 mm ² (#16 AWG)
3	Brushless Phase C Motor Power / Stepper Returns	1.3 mm ² (#16 AWG)
4	Reserved	1.3 mm ² (#16 AWG)
5	Ground	1.3 mm ² (#16 AWG)

Table 2-8: Motor Power Output Mating Connector

Description	Aerotech P/N	Third Party Source P/N	
Male 5 Pin D-Style	ECK01236	ITT Cannon DBM5W5PK87	
Contact (QTY. 5)	ECK00660	ITT Cannon DM53745-7	
Backshell	ECK00656	Amphenol 17-1726-2	

2.3.1. Brushless Motor Connections

The configuration shown in Figure 2-6 is an example of a typical brushless motor connection.

Figure 2-6: Brushless Motor Configuration

Brushless motors are commutated electronically by the controller, typically using Hall-effect devices. If you are using standard Aerotech motors and cables, motor phasing adjustments are not required and this section may be skipped.

The controller requires that the Back-EMF of each motor phase be aligned with the corresponding Hall-effect signal. To ensure proper alignment, motor, Hall, and encoder connections should be verified using one of the following methods: *powered*, through the use of a test program; or *unpowered* using an oscilloscope. Both methods will identify the A, B, and C Hall/motor lead sets and indicate the correct connections to the controller. Refer to Section 2.3.1.1. for powered motor phasing or Section 2.3.1.2. for unpowered motor and feedback phasing.

2.3.1.1. Powered Motor Phasing

Refer to the Motor Phasing Calculator in the Configuration Manager for motor, Hall, and encoder phasing.

Feedback Monitoring

The state of the encoder and Hall-effect device signals can be observed in the Motion Composer.

A "0" for the given Hall input indicates zero voltage or logic low, where a "1" indicates 5V or logic high.

Ensemble Motion Composer					
Elle Edit Yew Network Controller Build Deb					
ା 😂 😂 🖬 🗟 ର 📲 🔶 🗟 🖾 ାର ଦା	1 () () () () () () () () () (- = > & = > = (- II II II - I		
Avis Manager				• # ×	
Controller					
m					
Control Jog	View Encoder and Hall	Velocity Command	Status		
Task 1 Task 2 Task 3 Task 4 A	View Encoder and Hall	Diagnostic Display		• # ×	
*	signals in the Ensemble Diagnostics Display.	Controller I/O		å ×	
ect Explore		Position Command		1	
OID COLOR		Position Feedback	Position Feedback ProgramPositionCommand ProgramPositionFeedback		
		ProgramPositionCo			
		ProgramPositionFe			
		Axis I/0		9 ×	
	ר ר	Marker Input Leve	•1	-	
1		Hall & Input Level			
1100					
H 1A	Hall C Input Leve	Hall C Input Level			
	semble	ESTOP Input Level	1		
	Axis Fault		å ×		
		Over Current Faul	Over Current Fault		
		Axis Status	- Actine	a ×	
	CWLimitActive				
	CCWLimitActive				
		Axis Enabled			
		Home Cycle Comple	ete	1	
Output Enor Task Watch					
Disconnected Ready					

Figure 2-7: Encoder and Hall Signal Diagnostics

2.3.1.2. Unpowered Motor and Feedback Phasing

Disconnect the motor from the controller and connect the motor in the test configuration shown in Figure 2-8. This method will require a two-channel oscilloscope, a 5V power supply, and six resistors (10,000 ohm, 1/4 watt). All measurements should be made with the probe common of each channel of the oscilloscope connected to a neutral reference test point (TP4, shown in Figure 2-8). Wave forms are shown while moving the motor in the positive direction.

With the designations of the motor and Hall leads of a third party motor determined, the motor can now be connected to an Aerotech system. Connect motor lead A to motor connector A, motor lead B to motor connector B, and motor lead C to motor connector C. Hall leads should also be connected to their respective feedback connector pins (Hall A lead to the Hall A feedback pin, Hall B to Hall B, and Hall C to Hall C). The motor is correctly phased when the Hall states align with the Back EMF as shown in (Figure 2-9). Use the CommutationOffset parameter to correct for Hall signal misalignment.

Figure 2-9: Brushless Motor Phasing Goal

2.3.2. DC Brush Motor Connections

The configuration shown in Figure 2-10 is an example of a typical DC brush motor connection. Refer to Section 2.3.2.1. for information on motor phasing.

Figure 2-10: DC Brush Motor Configuration

2.3.2.1. DC Brush Motor Phasing

A properly phased motor means that the positive motor lead should be connected to the ØA motor terminal and the negative motor lead should be connected to the ØC motor terminal. To determine if the motor is properly phased, connect a voltmeter to the motor leads of an un-powered motor:

- 1. Connect the positive lead of the voltmeter to the one of the motor terminals.
- 2. Connect the negative lead of the voltmeter to the other motor terminal.
- 3. Rotate the motor clockwise by hand.

Figure 2-11: Clockwise Motor Rotation

- 4. If the voltmeter indicates a negative value, swap the motor leads and rotate the motor (CW, by hand) again. When the voltmeter indicates a positive value, the motor leads have been identified.
- 5. Connect the motor lead from the voltmeter to the ØA motor terminal on the Epaq MR. Connect the motor lead from the negative lead of the voltmeter to the ØC motor terminal on the Epaq MR.

NOTE: If using standard Aerotech motors and cables, motor and encoder connection adjustments are not required.

2.3.3. Stepper Motor Connections

The configuration shown in Figure 2-12 is an example of a typical stepper motor connection. Refer to Section 2.3.3.1. for information on motor phasing.

In this case, the effective motor voltage is half of the applied bus voltage. For example, an 80V motor bus supply is needed to get 40V across the motor.

Figure 2-12: Stepper Motor Configuration

2.3.3.1. Stepper Motor Phasing

NOTE: If using standard Aerotech motors and cables, motor and encoder connection adjustments are not required.

A stepper motor can be run with or without an encoder. If an encoder is not being used, phasing is not necessary. With an encoder, test for proper motor phasing by running a positive motion command.

If there is a positive scaling factor (determined by the CountsPerUnit parameters) and the motor moves in a clockwise direction, as viewed looking at the motor from the front mounting flange, the motor is phased correctly. If the motor moves in a counterclockwise direction, swap the motor leads and re-run the command.

Proper motor phasing is important because the end of travel (EOT) limit inputs are relative to motor rotation.

Figure 2-13: Clockwise Motor Rotation

NOTE: After the motor has been phased, use the ReverseMotionDirection parameter to change the direction of "positive" motion.
2.4. Motor Feedback Connections

The motor feedback connector (a 25-pin, D-style connector) has connections for an encoder, limit switches, Hall-effect devices, motor over-temperature device, 5 V encoder and limit power, and optional brake connections. The connector pin assignment is shown in Table 2-9 with detailed connection information in the following sections.

Pin#	Description	In/Out/Bi	Connector	
1	Chassis Frame Ground	N/A		
2	Motor Over Temperature Thermistor	Input		
3	+5V Power for Encoder (500 mA max)	Output		
4	Reserved	N/A		
5	Hall-Effect Sensor B (brushless motors only)	Input		
6	Encoder Marker Reference Pulse -	Input		
7	Encoder Marker Reference Pulse +	Input	25 13	
8	Analog Input 0 -	Input		
9	Reserved	N/A	• •	
10	Hall-Effect Sensor A (brushless motors only)	Input		
11	Hall-Effect Sensor C (brushless motors only)	Input		
12	Clockwise End of Travel Limit	Input		
13	Optional Brake - Output	Output		
14	Encoder Cosine +	Input		
15	Encoder Cosine -	Input		
16	+5V Power for Limit Switches (500 mA max)	Output		
17	Encoder Sine +	Input	•	
18	Encoder Sine -	Input	•	
19	Analog Input 0 +	Input		
20	Signal Common for Limit Switches	N/A		
21	Signal Common for Encoder	N/A		
22	Home Switch Input	Input		
23	Encoder Fault Input	Input		
24	Counterclockwise End of Travel Limit	Input		
25	Optional Brake + Output	Output		

 Table 2-9:
 Motor Feedback Connector Pin Assignment

Mating Connector	Aerotech P/N	Third Party P/N
25-Pin D-Connector	ECK00101	FCI DB25P064TXLF
Backshell	ECK00656	Amphenol 17E-1726-2

2.4.1. Encoder Inputs

The Epaq MR is equipped with standard and auxiliary encoder feedback channels. The standard encoder interface is accessible through the Motor Feedback connector. By default, it accepts an RS-422 differential line driver signal. If the -MXU or -MXH option has been purchased, the standard encoder interface has been configured for an analog encoder input via parameter settings.

Refer to Section 2.4.1.3. for encoder feedback phasing. Refer to Section 2.6. for the auxiliary encoder channel.

NOTE: Encoder wiring should be physically isolated from motor, AC power and all other power wiring.

NOTE: The PSO feature is **not** compatible with the -MXU option. The PSO feature operates with the -MXH option and with square wave encoders.

Pin#	Description	In/Out/Bi
1	Chassis Frame Ground	N/A
3	+5V Power for Encoder (500 mA max)	Output
6	Encoder Marker Reference Pulse -	Input
7	Encoder Marker Reference Pulse +	Input
14	Encoder Cosine +	Input
15	Encoder Cosine -	Input
17	Encoder Sine +	Input
18	Encoder Sine -	Input
21	Signal Common for Encoder	N/A

Table 2-10: Encoder Pin Assignment

2.4.1.1. RS-422 Line Driver Encoder (Standard)

The standard encoder interface accepts an RS-422 differential quadrature line driver signal. Invalid or missing signals will cause a feedback fault when the axis is enabled.

An analog encoder is used with the -MXH/-MXU option (refer to Section 2.4.1.2. for more information).

 Table 2-11:
 Encoder Specifications

Specification	Value
Encoder Frequency	10 MHz maximum (25 nsec minimum edge separation)
x4 Quadrature Decoding	40 million counts/sec

Figure 2-14: Line Driver Encoder Interface

2.4.1.2. Analog Encoder Interface

If the -MXH/-MXU option has been purchased, the standard encoder channel will accept a differential analog encoder input signal. The interpolation factor is determined by the EncoderMultiplicationFactor parameter and is software selectable (refer to the Ensemble Help file).

Specification	MP (MXU)	ML (MXU)	ML (MXH)	
Input Frequency (max)	200 kHz	500 kHz	500 kHz	
Input Amplitude	0.6 to 2.25 Vpk-Vpk	0.6 to 2.25 Vpk-Vpk	0.6 to 2.25 Vpk-Vpk	
Interpolation Factor (software selectable)	4,096	4,096	65,536	
MXH Interpolation Latency	N/A	N/A	 3.25 μsec (analog input to quadrature output) 	

Table 2-12: Analog Encoder Specifications

Refer to Figure 2-15 for the MXU/MXH typical input circuitry.

The encoder interface pin assignment is indicated in Section 2.4.1.

The gain, offset, and phase balance of the analog Sine and Cosine encoder input signals can all be adjusted via controller parameters. Encoder signals should be adjusted using the Feedback Tuning tab of the Digital Scope, which will automatically adjust the encoder parameters for optimum performance. See the Ensemble Help file for more information.

Figure 2-16: Analog Encoder Signals

2.4.1.3. Encoder Phasing

Incorrect encoder polarity will cause the system to fault when enabled or when a move command is issued. Figure 2-17 illustrates the proper encoder phasing for clockwise motor rotation (or positive forcer movement for linear motors). To verify, move the motor by hand in the CW (positive) direction while observing the position of the encoder in the diagnostics display (see Figure 2-18). The Motor Phasing Calculator in the Configuration Manager can be used to determine proper encoder polarity.

For dual loop systems, the velocity feedback encoder is displayed in the diagnostic display (Figure 2-18).

NOTE: Encoder manufacturers may refer to the encoder signals as A, B, and Z. The proper phase relationship between signals is shown in Figure 2-17.

	lotion Composer ew Network Controller Build Debug	Diagnostics Tools Help			10
			- 111-10	S B H H O D H H	
Axis Manager					- 9
Controller					
Control	Jog		Ve	locity Command Status	
	Kara Kara Kara Kara	Position Feedback		Diagnostic Display	····••• 0 ·
Task 1	Task 2 Task 3 Task 4 Auxilia	is displayed in the		Controller I/O	
				Position Feedback	
		Diagnostics Display.	L 4	ProgramPositionCommand	
				ProgramPositionFeedback	
			- rt	Velocity Feedback	
				Axis I/O	ņ
				CW Limit Input Level	
				CCW Limit Input Level	
	11000	• • • • • • • • • • • • • • • • • • • •	\mathbf{r}	None Limit Input Level	
		VIIIII		Barker Input Level	
		emble		Hall & Input Level	
				Axis Pmalt	P
				Position Error Fault	
				Over Current Fault	
-				CW Hardware Limit Active	
				CCW Hardware Limit Active	
			1213	Aris Status	а
			1111	CVLimitActive	
			112	CCWLimitActive CCWLimitActive	
Sec. Asa.			1991	Axis Enabled	
				Home Cycle Complete	
Output Eng	or Task Watch			tions of the compress	
connected	Ready				

Figure 2-18: Position Feedback in the Diagnostic Display

2.4.2. Hall-Effect Inputs

The Hall-effect switch inputs are recommended for AC brushless motor commutation but not absolutely required. The Hall-effect inputs accept 5-24 VDC level signals. Hall states (0,0,0) or (1,1,1) are invalid and will generate a "Hall Fault" axis fault.

Refer to Section 2.3.1.1. for Hall-effect device phasing.

Table 2-13: Hall-Effect Feedback Pin Assignment

Pin#	Description	In/Out/Bi
1	Chassis Frame Ground	N/A
3	+5V Power for Encoder (500 mA max)	Output
5	Hall-Effect Sensor B (brushless motors only)	Input
10	Hall-Effect Sensor A (brushless motors only)	Input
11	Hall-Effect Sensor C (brushless motors only)	Input
21	Signal Common for Encoder	N/A

Figure 2-19: Hall-Effect Inputs

2.4.3. Thermistor Input

The thermistor input is used to detect a motor over temperature condition by using a positive temperature coefficient sensor. As the temperature of the sensor increases, so does the resistance. Under normal operating conditions, the resistance of the thermistor is low (i.e., 100 ohms) which will result in a low input signal. As the increasing temperature causes the thermistor's resistance to increase, the signal will be seen as a logic high triggering an over temperature fault. The nominal trip value of the sensor is 1k Ohm.

Table 2-14: **Thermistor Interface Pin Assignment**

Figure 2-20: **Thermistor Input**

2.4.4. Encoder Fault Input

The encoder fault input is for use with encoders that have a fault output. This is provided by some manufactures and indicates a loss of encoder function. The active state of this input is parameter configurable and the controller should be configured to disable the axis when the fault level is active.

Table 2-15: Encoder Fault Pin Assignment

Figure 2-21: Encoder Fault Interface Input

2.4.5. End Of Travel Limit Inputs

End of Travel (EOT) limits are used to define the end of physical travel. The EOT limit inputs accept 5-24 VDC level signals. The active state of the EOT limits is software selectable by the EndOfTravelLimitSetup axis parameter (refer to the Ensemble Help file). Limit directions are relative to the encoder polarity in the diagnostics display (refer to Figure 2-23).

Positive motion is stopped by the clockwise (CW) end of travel limit input. Negative motion is stopped by the counterclockwise (CCW) end of travel limit input. The Home Limit switch can be parameter configured for use during the home cycle, however, the CW or CCW EOT limit is typically used instead.

Pin#	Description	In/Out/Bi
12	Clockwise End of Travel Limit	Input
16	+5V Power for Limit Switches (500 mA max)	Output
20	Signal Common for Limit Switches	N/A
22	Home Switch Input	Input
24	Counterclockwise End of Travel Limit	Input

 Table 2-16:
 End of Travel Limit Inputs Pin Assignment

Figure 2-22: End of Travel Limit Inputs

2.4.5.1. End Of Travel Limit Phasing

If the EOT limits are reversed, you will be able to move further into a limit but be unable to move out. To correct this, swap the connections to the CW and CCW inputs at the motor feedback connector. The logic level of the EOT limit inputs may be viewed in the Diagnostic Display (shown in Figure 2-23).

Ensemble Motion Composer				_ [] ×
Elle Edit View Network Controller Build Deb	ug Diagnostics Lools Help			
1 🔊 🖉 🖬 🕾 🎯 📗 🖉 🕲 🖄 🖉 👘	40 40 🚛 😂 🔤 🖓 🖓	- 11	HH4IOHH4	
🗶 Axis Manager				- # ×
Controller				
* 				
of Control Jog			Velocity Command Status	
	View End of Travel limit	-	Provide Protect	0
Task 1 Task 2 Task 3 Task 4 Au	signals in the Ensemble		Diagnotic Display Controller I/O	+ 9 ×
et E		Steel.	Position Command	
plane and a second s	Diagnostics Display.		Position Command Position Feedback	
<u> </u>			ProgramPositionCommand	
			ProgramPositionFeedback	
			Programposicionineedonce	
and the second			Amis I/O	
			CW Limit Input Level	# ×
			CCW Limit Input Level	
100	a a a a la l		None Limit Input Level	
B 1A	semble) -	Marker Input Level	
			Hall & Input Level	
	JUINA		Axis Fault	ų ×
			Position Error Fault	-
			Over Current Fault	
			CW Hardware Limit Active	
			CCW Hardware Limit Active	
			CW Software Limit Actine	
			Axis Status	# ×
			CWLimitActive	-
			CCWLimitActive	
			Axis Enabled	
			Home Cycle Complete	-
Output Enor Task Watch				
Disconnected Ready				

Figure 2-23: Limit Input Diagnostic Display

2.4.6. Brake Output

The Brake Output is a factory wired option allowed for one or more axes. The brake pins are used to automatically control a fail-safe brake (typically used on a vertical axis). The I/O option is required for each axis with a brake. The brake is configured for automatic or manual control using controller parameters (refer to the Ensemble Help file for more information).

Table 2-17: Brake Output Pin Assignment

Pin#	Description	In/Out/Bi
13	Optional Brake - Output	Output
25	Optional Brake + Output	Output

Table 2-18: Relay Specifications

Solid State Relay Rating			
Maximum Voltage	24 VDC		
Maximum Current	0.5 Amps		
Maximum Power	560 mW		
Output Resistance	0.1 ohm (typical)		
Turn-on/Turn-off Time	< 3 ms (with 500 ohm load at 5 VDC)		

2.4.7. Differential Analog Input 0

To interface to a single-ended (non-differential) voltage source, connect the signal common of the source to the negative input and the analog source signal to the positive input. A floating signal source should be referenced to the analog common as shown in Figure 2-24.

Table 2-19: **Differential Analog Input 0 Specifications**

Specification	MP Drive Value	ML Drive Value		
(AI+) - (AI-)	+10 V to -10 V ⁽¹⁾	+10 V to -10 V ⁽¹⁾		
Resolution (bits)	16 bits	16 bits		
Resolution (volts) 305 μV 305 μV				

Table 2-20: **Differential Analog Input 0 Pin Assignment**

Pin#	Description	In/Out/Bi
8	Analog Input 0 -	Input
19	Analog Input 0 +	Input
21	Signal Common for Encoder	N/A

Figure 2-24: Analog Input 0

2.5. Digital / Analog IO Connections

The IO connections includes 8 digital opto-inputs, 8 digital opto-outputs, 1 analog input, 1 analog output, a second encoder channel, and a brake/relay output. This connector is installed only if the -IO option has been ordered for the axis.

Pin#	Description	In/Out/Bi	Connector
1	Non-Inverting Analog Input 1+	Input	
2	InvertingAnalog Input 1-	Input	
3	Internal +5 Volt Power Supply (500 mA max)	Output	
4	Input Common for Opto-Inputs 0 - 3	Input	
5	Optically-Isolated Input 0	Input	
6	Optically-Isolated Input 1	Input	\bigcirc
7	Optically-Isolated Input 2	Input	13
8	Optically-Isolated Input 3	Input	
9	Output Common +	Input	
10	Optically-Isolated Output 0	Output	
11	Optically-Isolated Output 1	Output	
12	Optically-Isolated Output 2	Output	
13	Optically-Isolated Output 3	Output	
14	Analog Output 1	Output	
15	Ground	N/A	• •
16	Input Common for Opto-Inputs 4 - 7	Input	
17	Optically-Isolated Input 4	Input	
18	Optically-Isolated Input 5	Input	14
19	Optically-Isolated Input 6	Input	
20	Optically-Isolated Input 7	Input	\bigcirc
21	Output Common -	Input	
22	Optically-Isolated Output 4	Output	
23	Optically-Isolated Output 5	Output	
24	Optically-Isolated Output 6	Output	
25	Optically-Isolated Output 7	Output	

 Table 2-21:
 Digital / Analog IO Connector Pin Assignment

Mating Connector	Aerotech P/N	Third Party P/N
25-Pin D-Connector	ECK00101	FCI DB25P064TXLF
Backshell	ECK00656	Amphenol 17E-1726-2

2.5.1. Analog Input 1

To interface to a single-ended (non-differential) voltage source, connect the signal common of the source to the negative input and the analog source signal to the positive input. A floating signal source should be referenced to the analog common as shown in Figure 2-25.

Table 2-22: Analog Input 1 Specifications

Specification	MP Drive Value	ML Drive Value
(Al+) - (Al-)	+10 V to -10 V ⁽¹⁾	+10 V to -10 V ⁽¹⁾
Resolution (bits)	12 bits	16 bits
Resolution (volts)	4.88 mV	305 μV

1. Signals outside of this range may damage the input

Table 2-23: Analog Inputs Connector Pin Assignment

Pin#	Description	In/Out/Bi
1	Non-Inverting Analog Input 1+	Input
2	InvertingAnalog Input 1-	Input
15	Ground	N/A

Figure 2-25: Analog Input 1

2.5.2. Analog Output 1

The analog output is set to zero when power is first applied to the system or during a system reset.

NOTE: The Epaq MR does not have an "Analog Output 0".

Table 2-24: Analog Output Specifications (TB102 B)

Specification	Value
Output Voltage	-5 V to +5 V
Output Current	5 mA
Resolution (bits)	16 bits
Resolution (volts)	153 μV

Table 2-25: Analog Output Connector Pin Assignment

Pin#	Description	In/Out/Bi
14	Analog Output 1	Output
15	Ground	N/A

2.5.3. Opto-Isolated Outputs

The digital outputs are optically-isolated and may be connected in sourcing or sinking configurations. The digital outputs are designed to connect to other ground referenced circuits and are not intended to provide high-voltage isolation.

The outputs are software-configurable and must be connected in either all sinking or all sourcing mode. Figure 2-27 and Figure 2-28 illustrate how to connect to an output in current sourcing and current sinking modes.

The opto-isolator's common connections can be directly connected to the drive's power supply; however, doing so will effectively defeat the isolation and will reduce noise immunity.

NOTE: Power supply connections must always be made to both the Output Common Plus (OP) and Output Common Minus (OM) pins as shown in Figure 2-27 and Figure 2-28.

NOTE: All outputs on this connector map to output **port 1** within the Ensemble software.

Table 2-26:	Opto-Isolated	Output Connector	Pin Assignment
-------------	---------------	-------------------------	----------------

Pin#	Description	In/Out/Bi
9	Output Common +	Input
10	Optically-Isolated Output 0	Output
11	Optically-Isolated Output 1	Output
12	Optically-Isolated Output 2	Output
13	Optically-Isolated Output 3	Output
21	Output Common -	Input
22	Optically-Isolated Output 4	Output
23	Optically-Isolated Output 5	Output
24	Optically-Isolated Output 6	Output
25	Optically-Isolated Output 7	Output

Table 2-27: Output Specifications

Opto Device Specifications	Value	
Maximum Voltage	24 V maximum	
Maximum Sink/Source Current	60 mA/channel @ 50°C	
Output Saturation Voltage	2.75 V at maximum current	
Output Resistance	33 Ω	
Rise / Fall Time	250 usec (typical)	
Reset State	Output Off (High Impedance State)	

Suppression diodes must be installed on outputs driving relays or other inductive devices. This protects the outputs from damage caused by inductive spikes. Suppressor diodes, such as the 1N914, can be installed on all outputs to provide protection. It is important that the diode be installed correctly (normally reversed biased). Refer to Figure 2-28 for an example of a current sinking output with diode suppression and Figure 2-27 for an example of a current with diode suppression.

A EACH OUTPUT 60 mA MAXIMUM

A DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

2.5.4. Opto-Isolated Inputs

The digital inputs are opto-isolated and may be connected to current sourcing or current sinking devices, as shown in Figure 2-29 and Figure 2-30. These inputs are designed to connect to other ground-referenced circuits and are not intended for high-voltage isolation.

The opto-isolator's common connections can be directly connected to the drive's power supply; however, doing so will effectively defeat the isolation and will reduce noise immunity.

NOTE: All inputs on this connector map to input **port 1** within the Ensemble software.

Table 2-28:	Digital	Input S	pecifications
-------------	---------	---------	---------------

Input Voltage	Approximate Input Current	Turn On Time	Turn Off Time
+5 V	1 mA	200 usec	2000 usec
+24 V	6 mA	4 usec	1500 usec

Table 2-29: Opto-Isolated Input Connector Pin Assignment

Pin#	Description	In/Out/Bi
4	Input Common for Opto-Inputs 0 - 3	Input
5	Optically-Isolated Input 0	Input
6	Optically-Isolated Input 1	Input
7	Optically-Isolated Input 2	Input
8	Optically-Isolated Input 3	Input
16	Input Common for Opto-Inputs 4 - 7	Input
17	Optically-Isolated Input 4	Input
18	Optically-Isolated Input 5	Input
19	Optically-Isolated Input 6	Input
20	Optically-Isolated Input 7	Input

Figure 2-29: Inputs Connected to a Current Sourcing Device

Figure 2-30: Inputs Connected to a Current Sinking Device

2.6. Aux Encoder

The auxiliary encoder interface accepts a RS-422 differential quadrature line driver signal. This encoder channel can be used as an input for master/slave operation (handwheel), for dual feedback systems, or as an output to echo the standard encoder signals.

The auxiliary encoder channel can also be used as the PSO output. Configuring the PSO hardware will automatically configure this encoder channel as an output (refer to Section 2.6.1.) and will remove the 180 ohm terminator resistors.

The auxiliary encoder interface does not support analog encoders and thus cannot be used as an input for the -MXU or -MXH option in MP and ML drives.

This connector is installed only if the -IO option has been ordered for the axis.

Table 2-30: Aux Encoder Specifications

Specification	Value	
Encoder Frequency 10 MHz maximum (25 nsec minimum edge separation		
x4 Quadrature Decoding 40 million counts/sec		
MXH Interpolation Latency ~ 3.25 µsec (analog input to quadrature output)		

Table 2-31: Auxiliary Encoder Channel Pin Assignment

Pin#	Description	In/Out/Bi	Connector
1	Auxiliary RS-422 Encoder Sine +	Bidirectional	
2	Auxiliary RS-422 Encoder Cosine +	Bidirectional	
3	Auxiliary RS-422 Marker Pulse +/ PSO Output ⁽¹⁾	Bidirectional	5
4	Encoder +5 Volt Power	Output	96
5	Encoder Power Common	N/A	ŏO
6	Auxiliary RS-422 Encoder Sine -	Bidirectional	
7	Auxiliary RS-422 Encoder Cosine -	Bidirectional	
8	Auxiliary RS-422 Marker Pulse - / PSO Output ⁽¹⁾	Bidirectional	
9	Encoder Power Common	N/A	
(1) For PSQ, see Section 2.6.1, Position Synchronized Output (PSQ)/Laser Firing			

(1) For PSO, see Section 2.6.1. Position Synchronized Output (PSO)/Laser Firing

Mating Connector	Aerotech P/N	Third Party P/N
9-Pin D-Connector	ECK00137	Cinch DE-9P
Backshell	ECK01021	Amphenol 17-1724-2

Figure 2-31: Auxiliary Encoder Channel

2.6.1. Position Synchronized Output (PSO)/Laser Firing

The PSO can be programmed to generate an output synchronized to the feedback position and is typically used to fire a laser or sequence an external device. Trigger signals may be derived from a feedback channel or a software trigger. The position synchronized output pulse is generated using high-speed hardware, allowing minimal latency between the trigger condition and the output.

The PSO output is available on the dual-function AUX Marker/PSO signal lines. The auxiliary marker must be configured as an output using the PSOOUTPUT CONTROL command. Refer to the Help File for more information.

An RS-422 line receiver or opto-isolator is recommended, especially when using long cable lengths in noisy environments or when high frequency pulse transmission is required. It is best to locate the line receiver or opto-isolator close to the receiving electronics.

NOTE: The PSO feature is **not** compatible with the -MXU option. The PSO feature operates with the -MXH option and with square wave encoders.

Table 2-32:	PSO Specifications
-------------	---------------------------

Specification		Value
Maximum Input Tracking Rate ⁽¹⁾	Single-Axis Tracking	16.6 MHz
	Dual-Axis Tracking ⁽³⁾	8.33 MHz
Maximum Quadrature Encoder Output	Standard Feedback	40 MHz
Frequency	-MXH Feedback ⁽³⁾	25 MHz
Maximum PSO Output (Fire) Frequency ⁽²⁾		12.5 MHz
	Single-Axis Tracking	160 nsec
Firing Latency	Dual-Axis Tracking ⁽³⁾	220 nsec
1. Signals in excess of this rate will cause a loss of PSO accuracy.		
2. The optocoupler that you use on the output might have an effect on this rate.		
3. Epaq MR with ML drives		

* Active low output shown. Opposite polarity available by reversing connections to Pins 3 and 8.

Figure 2-32: PSO Interface

2.7. Communications Connector

The Ethernet connector (Communications) provides a 10/100 Ethernet connection to the Epaq MR controller. This can be connected directly to a hub or switch, or to a PC using a crossover cable. This port is viewed by the supplied software applications to communicate with the controller. It can also be configured for Modbus TCP/IP or simple ASCII communications.

Figure 2-33: Ethernet Interface

Cable Name	Length		
ENET-XOVER-X	x = 9, 15, 30, 45, 60, 75, 100 or 150 decimeters		
e Ensemble	Crossover CAT5 cable	Ethernet I/O Module or PC	
e Ensemble	Ethernet HUB or Switch standard CAT5 cable	Ethernet I/O Module or PC	
Figure 2-34: Ethernet Connection			

2.8. Ext Drive Connector

The EXT DRIVE connector allows additional external drives to be connected to the Epaq MR chassis. This must be done using a CAT-6 shielded cable configured for the Epaq MR to the drive's Aeronet input.

Figure 2-35: Aeronet Interface

Cable Name	Description	Length
ENET-CAT6-X	A CAT6 cable	x = 3, 10, 20, 30, 45, 75, or 90 decimeters

2.9. RS-232 Interface

The RS-232 port can be used for simple ASCII communications with another device. A one-to-one cable (not a null modem) is required for connection to a PC.

Figure 2-36: RS-232 Interface

Table 2-35: RS-232 Connector Pin Assignment

Pin	Label	RS-232 Description
1	+5V	+5V Power
2	TX	Transmit
3	RX	Receive
4		N/A
5	Common	Signal Common
6		N/A
7-9	Reserved/Do	Not Connect

2.10. PC Configuration and Operation Information

For additional information about PC configuration, hardware requirements, programming, utilities, and system operation refer to the Ensemble Help file.

This page intentionally left blank.

Chapter 3: Options

Table 3-1 provides a description of the various Epaq MR options.

Table 3-1:	Options and	Capabilities
	opuono una	oupublilitioo

Option	Section	Description / Capabilities
Chassis Slides	Section 1.2.	Mounting option
	Mechanical	
	Specifications	
Emergency Stop	Section 3.1.	ESTOP Sense Input
	Emergency Stop	EN ISO 13849-1, Category 2, Category 3
	(ESTOP1,2,3)	
MXU	Section 2.4.1.2.	Encoder Resolution Multiplier, up to 1,024 times
	Analog Encoder	200 kHz / 2 MHz max input freq. respectively
	Interface	
Failsafe Brake	Section 2.4.6. Brake	Brake is configured to an axis
Output	Output	Standard brake voltage is 24 VDC
		Opto 22 module controlled brake output
Joystick Inter-	Section 3.2. Joystick	Joystick option
face	Interface	

3.1. Emergency Stop (ESTOP1,2,3)

ESTOP1, 2, and 3 are integrated emergency stop hardware options available on the Epaq MR. User connections are made via the optional 15D ESTOP connector.

- ESTOP1 uses a single relay to disconnect the motor power supply from the internal drive modules.
- ESTOP2 uses two relays in series to disconnect the motor power supply from the drive modules.
- ESTOP3 uses two relays in series to disconnect the motor power supply from the drive modules and dissipates the stored energy in the motor power supply.

All relays are force guided and have a monitor contact.

Figure 3-1: ESTOP Option Interface

Table 3-2: ESTOP Option Mating Connector

Mating Connector	Aerotech P/N	Third Party P/N
15-Pin D-Connector	ECK00100	FCI DA15P064TXLF
Backshell	ECK01022	Amphenol 17E-1725-2

The ESTOP1,2,3 options can be used to provide performance in accordance with EN ISO 13849-1 as shown in Table 3-3.

Table 3-3: ESTOP Safety Ratings

Option	Relays	EN ISO 13849-1
ESTOP1	1 force guided relay with monitor contact	Category 2, PL d
ESTOP2	2 force guided relays with monitor contacts	Category 3, PL d
ESTOP3	2 force guided relays with monitor contracts	Category 3, PL d

WARNING: The machine integrator, OEM, or end user is responsible for performing the design, integration, and test of the safety system in accordance with the relevant safety standards. This responsibility includes the use of safety monitoring devices, interlocks, switches, light curtains and all other means of providing operator protection.

Table 3-4: Relay Specifications

ESTOP1 CR1 and ESTOP2 CR1 and CR2		
Relay Part Number	Aerotech: ECW01106	
	Sprecher & Schuh: CA7-16E-01-24E	
AC-1 (resistive load)	Rating of 32 A	
Turn On	The coil requires 17.0 W to turn on (which is equal to 700 mA @ 24 V)	
On / Holding	The coil requires 1.7 W on (holding) current (which is equal to 70 mA @ 24 V)	
ESTOP3 CR1 and CR2		
Relay Part Number	Aerotech: ECW01107	
	Sprecher & Schuh: CA7-16E-M31-24E	
AC-1 (resistive load)	Rating of 32 A	
Turn On	The coil requires 17.0 W to turn on (which is equal to 700 mA @ 24 V)	
On / Holding	The coil requires 1.7 W on (holding) current (which is equal to 70 mA @ 24 V)	

Figure 3-3: ESTOP2

Figure 3-4: ESTOP3

3.2. Joystick Interface

The Joystick Interface is an optional 15-pin 'D' style connector accessible at the rear of the Epaq MR chassis. The joystick option is factory wired to a specified axis' I/O option board. The Joystick Interface uses two analog inputs and three dedicated inputs (joystick buttons). IO signals not used by the joystick are not available to the user. Joystick electrical connections are shown in Figure 3-6.

Figure 3-5: Joystick Interface

Table 3-5:	Joystick Interface Connector Pin Assignment
------------	---

Pin #	Label	Description	In/Out/Bi
1	+5V	+5V power	Output
2	JSA	Joystick button A (Input 5) Axis Select	Input
3	JOA X	Analog Input 0	Input
4	Common	Joystick power common	N/A
5	Not Used	Not Used	N/A
6	JOA A	Analog Input 1	Input
7	JS B	Joystick button B (Input 6) Speed Select	Input
8	Not Used	Not Used	N/A
9	Not Used	Not Used	N/A
10	Not Used	Not Used	N/A
11	Not Used	Not Used	N/A
12	Shield	Shield	N/A
13	Interlock	Joystick Interlock (Input 7)	Input
14	Not Used	Not Used	N/A
15	Not Used	Not Used	N/A

Mating Connector	Aerotech P/N	Third Party P/N
15-Pin D-Connector	ECK00100	FCI DA15P064TXLF
Backshell	ECK01022	Amphenol 17E-1725-2
Aerotech joysticks JI (NEMA12 (IP54) rated) and JBV are powered from 5V and have a nominal 2.5V output in the center detent position. Three buttons are used to select axis pairs and speed ranges. An optional interlock signal is used to indicate to the controller that the joystick is present. Joystick control will not activate unless the joystick is in the center location. Third party devices can be used provided they produce a symmetric output voltage within the range of -10V to +10V.

All joystick operating parameters are software configurable. Refer to the Ensemble Help file for additional information.

Chapter 4: Maintenance

This section covers the internal boards, important board components, and how to clean the drive.

DANGER: Always disconnect the Mains power connection before opening the Epaq MR chassis.

DANGER: Before performing any tests, be aware of lethal voltages inside the controller and at the input and output power connections. A qualified service technician or electrician should perform these tests.

4.1. Power Board Assembly

DANGER: Always disconnect the Mains power connection before opening the Epaq MR chassis. Fuses must not be changed with Mains power applied to unit.

The Epaq MR is factory wired for either 100/200 VAC or 115/230 VAC input voltage. The input voltage select switches (S1 and S2) are located on the left side of the Epaq MR power board. Both switches must be set the same, all UP or all DOWN. The UP setting on S1 and S2 configures the Epaq MR for high voltage (200 or 230 V). The DOWN setting is for low voltage (100 or 115 V).

WARNING: Do not change power switches while power is connected.

WARNING: Improper configuration will cause fuses F1-F4 to open.

WARNING: An input power label is affixed to the back of the Epaq MR at the factory. If you change the input voltage, you are responsible for changing the label on the back of the unit.

Figure 4-1: Power Board

Component	100/115 VAC	200/230 VAC	Bipolar	Unipolar
SW1, SW2	В	A	-	-
BW4, BW6	-	-	Factory Select	Installed
BW5	-	-	Installed	Factory Select

4.2. Preventative Maintenance

The Epaq MR and external wiring should be inspected monthly. Inspections may be required at more frequent intervals, depending on the environment and use of the system. The table below lists the recommended checks that should be made during these inspections.

DANGER: Disconnect power to Epaq MR main supply before servicing.

DANGER: Disconnect power to avoid shock hazard.

Table 4-2: Preventative Maintenance

Check	Action to be Taken
Visually Check chassis for loose or damaged parts	Parts should be repaired as required. If internal
/ hardware.	damage is suspected, these parts should be
Note: Internal inspection is not required.	checked and repairs made if necessary.
Inspect cooling vents.	Remove any accumulated material from vents.
Check for fluids or electrically conductive material	Any fluids or electrically conductive material must
exposure.	not be permitted to enter the Epaq MR.
Visually inspect all cables and connections.	Tighten or re-secure any loose connections.
	Replace worn or frayed cables. Replace broken
	connectors.

Cleaning

The Epaq MR chassis can be wiped with a clean, dry, soft cloth. The cloth may be slightly moistened if required with water or isopropyl alcohol to aid in cleaning if necessary. In this case, be careful not to allow moisture to enter the Epaq MR or onto exposed connectors / components. Fluids and sprays are not recommended because of the chance for internal contamination, which may result in electrical shorts and/or corrosion. The electrical power must be disconnected from the Epaq MR while cleaning. Do not allow cleaning substances or other fluids to enter the Epaq MR or to get on to any of the connectors. Avoid cleaning labels to prevent removing the label information.

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit https://www.aerotech.com/global-technical-support.aspx for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

http://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA, CANADA, MEXICO	CHINA	GERMANY
Aerotech, Inc.	Aerotech China	Aerotech Germany
Global Headquarters	Full-Service Subsidiary	Full-Service Subsidiary
Phone: +1-412-967-6440	Phone: +86 (21) 3319 7715	Phone: +49 (0)911 967 9370
Fax: +1-412-967-6870		Fax: +49 (0)911 967 93720

JAFAN	
Aerotech Japan	
Full-Service Subsidiary	
Phone: +81 (0)50 5830 6814	
Fax: +81 (0)43 306 3773	

LADAN

TAIWAN Aerotech Taiwan Full-Service Subsidiary Phone: +886 (0)2 8751 6690

UNITED KINGDOM

Aerotech United Kingdom Full-Service Subsidiary Phone: +44 (0)1256 855055 Fax: +44 (0)1256 855649

Have your customer order number ready before calling.

Appendix B: Revision History

1.07.00a Changes: Updated fuse information on Figure 4-1.

Description
The following sections have been updated:
EU Declaration of Conformity
Agency Approvals
Section 2.2.3. I/O and Signal Wiring Requirements
Section 2.3.1.2. Unpowered Motor and Feedback Phasing
Section 2.4.1.3. Encoder Phasing
Section 2.4.7. Differential Analog Input 0
Analog Input 1
Section 2.5.2. Analog Output 1
Section 2.5.4. Opto-Isolated Inputs
Section 2.6. Aux Encoder
 Declaration of Conformity updated: EU Declaration of Conformity
AC Power Connections section updated: Section 2.2.1.
 I/O and Signal Wiring Requirements section updated: Section 2.2.3.
Brushless Motor Connections updated: Section 2.3.1.
Powered Motor Phasing section updated: Section 2.3.1.1.
 Unpowered Motor and Feedback Phasing updated: Section 2.3.1.2.
Analog Input 0 section updated: Section 2.4.7.
Analog Input 1 section updated: Section 2.5.1.
Opto-Isolated Inputs section updated: Section 2.5.4.
Opto-Isolated Outputs section updated: Section 2.5.3.
Aux Encoder section updated: Section 2.6.
Revision changes have been archived. If you need a copy of this revision, contact Aerotech
Global Technical Support.

Index

ndex		Control Supply specifications	17-18
-		D	
-I/O Expansion Board	67	DC Brush Motor Connections	35
2		DC Brush Motor Phasing	35
2014/35/EU	7	Declaration of Conformity	7
Α		Digital / Analog IO Connections	51
AC Power Connections	27	dimensions	20
AC Power Input	16	Drive and Software Compatibility	23
AC Power Wiring Specifications	27	E	
Aeronet Interface	63	Efficiency of Power Amplifier specifications	17
Altitude	22	Electrical Installation	26
Ambient Temperature	22	Electrical Specifications	16-18
Analog Encoder Specifications	40	Encoder and Hall Signal Diagnostics	33
Analog Input 0	50	Encoder Fault Input	46
Analog Input 1	52	Encoder Fault Interface Input	46
Analog Output 1	53	Encoder Fault Pin Assignment	46
Audible Noise	22	Encoder Inputs	38
Aux Encoder	58	Encoder Phasing	42
Auxiliary Power Outputs	16	Encoder Phasing Reference Diagram	42
В		Encoder Pin Assignment	38
Brake Output	49	End Of Travel Limit Input Interface (J207)	47
Brushless Motor Connections	32	End Of Travel Limit Phasing	48
Brushless Motor Phasing	32	Environmental Specifications	22
Brushless Motor Phasing Goal	34	ESTOP	68
Bus Voltage Options	16	Ethernet Interface	62
С		Ext Drive Connector	63
Chassis Electrical Specifications	16	F	
Check chassis for loose or damaged parts / hardware	77	Feature Summary Feedback Monitoring	14 33
Check for fluids or electrically conductive material exposure	77	Functional Diagram	15
Communications Connector	62	G	
Continuous Output Current specifications	17-18	Global Technical Support	2

н		Motor Output Connections	31
Hall-Effect Feedback Interface Pin Assignme	nt 44	Motor Phasing Oscilloscope Example	34
Hall-Effect Inputs	44	Motor Power Output Connections	31
Humidity	22	Motor Power Output Mating Connector	31
I		Motor Supply specifications	17-18
I/O and Signal Wiring Requirements	29	Ν	
Inrush Current	16	Noise	22
inspect all cables and connections	77	о	
Inspect cooling vents	77	optional joysticks	73
Inspection	77	Opto-Isolated Inputs	56
Installation and Configuration	25	Opto-Isolated Outputs	54
Introduction	13	Output Impedance	18
ISO 13849-1 & -2	7	Output Voltage	18
Isolation	17-18	Output Voltage specifications	17
J		Overview	13
Joystick Interface	72	Р	
L		PC Configuration and Operation Information	65
Leakage Current	16	Peak Output Current specifications	17-18
Limit Input Diagnostic Display	48	Pollution	22
Line Driver Encoder Interface	39	Position Feedback in the Diagnostic Display	43
line filter	28	Position Synchronized Output (PSO)	60
Linear Amplifier Electrical Specifications	18	Position Synchronized Output (PSO)/Laser F	iring 60
low voltage connections	26	Power Amplifier Bandwidth specifications	17-18
м		Powered Motor Phasing	33
Maintenance	75	Preventative Maintenance	77
Mating Connector	31	Protection	16
Mechanical Dimensions	20	Protective Features	17-18
Minimum Load	18	PSO	60
Minimum Load Inductance specifications	17	PSO Output Sources	60
Modes of Operation	17-18	PWM Switching Frequency specifications	17
Motor Feedback Connections	37	Q	
Motor Feedback Connector Pin Assignment	37	Quick Installation Guide	11

Quick Start Connections	11
R	
RS-422 Line Driver Encoder (Standard)	39
S	
Safety Procedures and Warnings	9
Servo Amplifier Electrical Specifications	17
Solid State Relay Rating	49
Stepper Motor Connections	36
Stepper Motor Phasing	36
Support	2
т	
Technical Support	2
Thermistor Input	45
U	
UFM-ST	28
unit weight	21
Unpacking the Chassis	25
Unpowered Motor and Feedback Phasing	34
Use	22
User Power Supply specifications	17-18
V	
Voltage Selection	30
W	
Warnings	9
Warranty and Field Service	79