

ACS LP Hardware Manual

Revision: 1.01.00

Global Technical Support

Go to www.aerotech.com/global-technical-support for information and support about your Aerotech products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

United States (World Headquarters)			
Email: Support@aerotech.com Phone: +1-412-967-6440 Fax: +1-412-967-6870	101 Zeta Drive Pittsburgh, PA 15238-2811 www.aerotech.com		
United Kingdom	China		
Email: Support@aerotech.com Phone: +44 (0)1256 855055 Fax: +44 (0)1256 855649	Email: Support@aerotech.com Phone: +86 (21) 5508 6731		
Germany	Taiwan		
Email: Support@aerotech.com Phone: +49 (0)911 967 9370 Fax: +49 (0)911 967 93720	Email: Support@aerotech.com Phone: +886 (0)2 8751 6690		
France			
Email: Support@aerotech.com Phone: +33 2 37 21 87 65			

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2015-2020, Aerotech, Inc., All rights reserved.

Aerotech Worldwide

Table of Contents

ACS LP Hardware Manual	. 1
Table of Contents	. 3
List of Figures	
List of Tables	
Safety Procedures and Warnings	
EU Declaration of Incorporation	/
Chapter 1: Overview	. 9
1.1. Environmental Specifications	. 12
1.2. Basic Specifications	
1.3. Air Requirements	. 14
Chapter 2: Mechanical Specifications and Installation	15
2.1. Unpacking and Handling the Stage	
2.2. Dimensions	
2.3. Securing the Stage to the Mounting Surface	
2.4. Clamping a Workpiece to the Collet	
2.4.1. Load Capability	
2.5. Changing the Workholding Devices	
2.5.1. Collet Change Procedure	. 22
Chapter 3: Electrical Specifications and Installation	.25
3.1. Motor and Feedback Connectors	
3.2. Motor and Feedback Wiring	
3.3. Motor and Feedback Specifications	
3.4. Marker and Machine Direction	
Chapter 4: Maintenance	
4.1. Stage Service and Inspection Schedule	37
4.2. Stage Cleaning and Lubrication	. 38
4.2.1. Collet and Collet Chuck Lubrication and Cleaning	
4.3. Seal Replacement 4.3.1. Piston Seal Change Procedure	
4.3.2. Rear Seal Change Procedure	
4.4. Troubleshooting	
Appendix A: Warranty and Field Service	
Appendix B: Revision History	49
, appendix 21 (conclusion meter)	. 40

List of Figures

Figure 1-1:	ACS LP Rotary Stage with Callouts	
Figure 2-1:	ACS100LP Dimensions	16
Figure 2-2:	ACS150LP Dimensions	17
Figure 2-3:	ACS200LP Dimensions	18
Figure 2-4:	ACS LP Stage Mounting Holes	20
Figure 2-5:	Typical ACS150LP Stage Showing Side Mounting Holes	
Figure 2-6:	Schematic of Collet Insertion Into and Removal From Collet Nut	
Figure 2-7:	Installation Procedure for Collet	23
Figure 3-1:	Motor and Feedback Wiring	
Figure 3-2:	Machine Direction	
Figure 3-3:	Hall Phasing	
Figure 3-4:	Analog Encoder Phasing Reference Diagram	
Figure 3-5:	Encoder Phasing Reference Diagram (Standard)	
Figure 4-1:	Piston Seal Change Exploded View	40
Figure 4-2:	Piston Seal Installation Procedure	
Figure 4-3:	Cross-Section View of Piston Showing Seal Orientation	43
Figure 4-4:	Exploded Drawing of Rear Seal Components	44

List of Tables

Table 1-1:	ACS100LP Model Numbering System	9
Table 1-2:	ACS150LP Model Numbering System	
Table 1-3:	ACS200LP Model Numbering System	
Table 1-4:	Environmental Specifications	
Table 1-5:	ACS LP Series Specifications	
Table 2-1:	Stage to Mounting Surface Hardware	
Table 3-1:	Motor Pinouts	
Table 3-2:	Mating Connector Part Numbers for the Motor Connector	
Table 3-3:	Feedback Pinouts	
Table 3-4:	Mating Connector Part Numbers for the Feedback Connector	
Table 3-5:	Feedback Specifications	
Table 3-6:	Encoder Specifications	
Table 3-7:	Maximum Speed (rpm) Per Encoder Option	
Table 3-8:	Motor Specifications (ACS100LP)	
Table 3-9:	Motor Specifications (ACS150LP)	
Table 3-10:	Motor Specifications (ACS200LP)	
Table 4-1:	Recommended Lubricants	
Table 4-2:	Piston Seal Replacement Part Numbers	
Table 4-3:	Rear Seal Replacement Part Numbers	

Safety Procedures and Warnings

This manual tells you how to carefully and correctly use and operate the ACS LP. Read all parts of this manual before you install or operate the ACS LP or before you do maintenance to your system. To prevent injury to you and damage to the equipment, obey the precautions in this manual. The precautions that follow apply when you see a Danger or Warning symbol in this manual. If you do not obey these precautions, injury to you or damage to the equipment can occur. If you do not understand the information in this manual, contact Aerotech Global Technical Support.

This product has been designed for light industrial manufacturing or laboratory environments. The protection provided by the equipment could be impaired if the product is used in a manner not specified by the manufacturer.

DANGER: This product contains potentially lethal voltages. To reduce the possibility of electrical shock, bodily injury, or death the following precautions must be followed.

1. Access to the ACS LP and component parts must be restricted while connected to a power source.

- 2. Do not connect or disconnect any electrical components or connecting cables while connected to a power source.
- 3. Disconnect electrical power before servicing equipment.
- 4. All components must be properly grounded in accordance with local electrical safety requirements.
- 5. Operator safeguarding requirements must be addressed during final integration of the product.

WARNING: To minimize the possibility of electrical shock, bodily injury or death the following precautions must be followed.

- 1. Moving parts can cause crushing or shearing injuries. Access to all stage and motor parts must be restricted while connected to a power source.
- 2. Cables can pose a tripping hazard. Securely mount and position all system cables to avoid potential hazards.
- Do not expose this product to environments or conditions outside of the listed specifications. Exceeding environmental or operating specifications can cause damage to the equipment.

- 4. The ACS LP stage must be mounted securely. Improper mounting can result in injury and damage to the equipment.
- 5. Use care when moving the ACS LP stage. Lifting or transporting the ACS LP stage improperly can result in injury or damage to the ACS LP.
- 6. This product is intended for light industrial manufacturing or laboratory use. Use of this product for unintended applications can result in injury and damage to the equipment.
- 7. If the product is used in a manner not specified by the manufacturer, the protection provided by the product can be impaired and result in damage, shock, injury, or death.
- 8. Operators must be trained before operating this equipment.
- 9. All service and maintenance must be performed by qualified personnel.

EU Declaration of Incorporation

Manufacture	r:
-------------	----

Aerotech, Inc. 101 Zeta Drive Pittsburgh, PA 15238-2811 USA

herewith declares that the product:

ACS LP Stage

is intended to be incorporated into machinery to constitute machinery covered by the Directive 2006/42/EC as amended;

and that the following harmonized European standards have been applied:

EN ISO 12100:2010 Safety of machinery - Basic concepts, general principles for design EN 60204-1:2010 Safety of machinery - Electrical equipment of machines - Part 1: General requirements

and further more declares that

it is not allowed to put the equipment into service until the machinery into which it is to be incorporated or of which it is to be a component has been found and declared to be in conformity with the provisions of the Directive 2006/42/EC and with national implementing legislation, for example, as a whole, including the equipment referred to in this Declaration.

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following Directive(s):

EU 2015/863

RoHS 3 Directive

Authorized Representative: Address:

Simon Smith, European Director Aerotech Ltd The Old Brick Kiln, Ramsdell, Tadley Hampshire RG26 5PR UK

Name Position Location Date (llop Minerty / Alex Weibel

Engineer Verifying Compliance Pittsburgh, PA 3/31/2020

CE

This page intentionally left blank.

Chapter 1: Overview

NOTE: Aerotech continually improves its product offerings; listed options may be superseded at any time. All drawings and illustrations are for reference only and were complete and accurate as of this manual's release. Refer to www.aerotech.com for the most up-to-date information.

Table 1-1: ACS100LP Model Numbering System			
ACS Mechanical-Bear	ing Direct-Drive Rotary Collet Stage, 100 mm diameter		
Chuck Style (Required	i)		
-ER8	ER8 ultra-precision collet		
-ER8MB	ER8 microbore collet		
Feedback (Required)			
-E1	Incremental encoder, 1 Vpp, sine wave output		
-E2	Incremental encoder, Digital, RS422 line-driver, x5 interpolation		
-E3	Incremental encoder, Digital, RS422 line-driver, x10 interpolation		
-E4	Incremental encoder, Digital, RS422 line-driver, x25 interpolation		
-E5	Incremental encoder, Digital, RS422 line-driver, x50 interpolation		
e .	r signals are synthesized with a 16 MHz clock. Ensure that the encoder sample rate on the controller is wer clock rates are available on request).		
Wrench (Optional)			
-WR	Wrench for changing the collet Aerotech P/N: MFB25378-01 [Qty-2]		
Metrology (Required)			
-PL1	Uncalibrated with performance plots		
-PL2	PL2 Calibrated (HALAR) with performance plots		
Accessories (To be Or	rdered as a Separate Line Item)		
Collet-ER8-CLTxx	ER8 DIN6499AA electropolished collet, 0.5 mm to 5 mm part sizes diameter available		

Collet-ER8-CLTxx	ER8 DIN6499AA electropolished collet, 0.5 mm to 5 mm part sizes diameter available
Collet-ER8MB-CLTxx	ER8 DIN6499AA electropolished mircro-bore collet, 0.2 mm to 0.9 mm part sizes diameter available
CGF	Collet and gripper filtration kit

	Model Numbering System		
ACS Mechanical-Bearin	ng Direct-Drive Rotary Collet Stage, 150 mm diameter		
Motor (Required)			
-M1	Low current, -A winding		
-M2	Low current, -B winding		
Feedback (Required)			
-E1	Incremental encoder, 1 Vpp, sine wave output		
-E2	Incremental encoder, Digital, RS422 line-driver, x5 interpolation		
-E3	Incremental encoder, Digital, RS422 line-driver, x10 interpolation		
-E4	Incremental encoder, Digital, RS422 line-driver, x25 interpolation		
-E5	Incremental encoder, Digital, RS422 line-driver, x50 interpolation		
a 1	signals are synthesized with a 16 MHz clock. Ensure that the encoder sample rate on the controller is er clock rates are available on request).		
Rear Seal (Optional)			
-SL	Rear seal		
Wrench (Optional)			
-WR	Wrench for changing the collet Aerotech P/N: MFB25378-02 [Qty-2]		
Metrology (Required)			
-PL1	Uncalibrated with performance plots		
-PL2	Calibrated (HALAR) with performance plots		
Accessories (To be Ord	ered as a Separate Line Item)		
-Collet-ER25-CLTxx	ER25 DIN6499AA Electropolished Collet, 0.5 mm to 15 mm part holding sizes available		
-CGF	Collet and gripper filtration kit		

Table 1-2: ACS150LP Model Numbering System

	Table 1-3: ACS200LP Model Numbering System			
ACS Mechanical-Bear	ing Direct-Drive Rotary Collet Stage, 200 mm diameter			
Stage Size (Required)				
-200LP	200 mm stage width; 5.99 N·m continuous torque			
Motor (Required)				
-M1	Low current Standard motor winding			
-M2	Optional motor winding for ACS-150LP and ACS-200LP			
Feedback (Required)				
-E1	Incremental encoder, 1 Vpp, sine wave output			
-E2	Incremental encoder, Digital, RS422 line-driver, x5 interpolation			
-E3	Incremental encoder, Digital, RS422 line-driver, x10 interpolation			
-E4	Incremental encoder, Digital, RS422 line-driver, x25 interpolation			
-E5	Incremental encoder, Digital, RS422 line-driver, x50 interpolation			
	r signals are synthesized with a 16 MHz clock. Ensure that the encoder sample rate on the controller is wer clock rates are available on request).			
Rear Seal (Optional)				
-SL	Rear seal			
Wrench (Optional)				
	Wrench for changing the collet			
-WR	Aerotech P/N: MCA01857 [Qty-1]			
	Aerotech P/N: MCA02007 [Qty-1]			
Metrology (Required)				
-PL1	Uncalibrated with performance plots			
-PL2	Calibrated (HALAR) with performance plots			
Accessories (To be Ordered as a Separate Line Item)				
-Collet-ER40-CLTxx	ER40 DIN6499AA Electropolished Collet, 15.5 mm to 25 mm part holding sizes available			
-CGF	Collet and gripper filtration kit			
NOTE: ER40 collet sizes belo	w 15.5 mm diameter are not supported. Use ACS150LP if these sizes are required.			

Table 1-3: ACS200LP Model Numbering System

Figure 1-1: ACS LP Rotary Stage with Callouts

1.1. Environmental Specifications

WARNING: Do not expose this product to environments or conditions outside of the listed specifications. Exceeding environmental or operating specifications can cause damage to the equipment.

Ambient Temperature	Operating: 10° to 35° C (50° to 95° F) The optimal operating temperature is 20° C ±2° C (68° F ±4° F). If at any time the operating temperature deviates from 20° C, degradation in performance could occur.
	Storage: 0° to 40° C (32° to 104° F) in original shipping packaging
	Operating: 20% to 60% RH
Humidity	Storage: 10% to 70% RH, non-condensing in original packaging. The stage should be packaged with desiccant if it is to be stored for an extended time.
Altitude	Operating: 0 m to 2,000 m (0 ft to 6,562 ft) above sea level Contact Aerotech if your specific application involves use above 2,000 m or below sea level.
Vibration	Use the system in a low vibration environment. Excessive floor or acoustical vibration can affect system performance. Contact Aerotech for information regarding your specific application.
Protection Rating	The ACS LP stages are not suited for dusty or wet environments. This equates to an ingress protection rating of IP40.
Use	Indoor use only

Table 1-4: Environmental Specifications

1.2. Basic Specifications

NOTE: Aerotech continually improves its product offerings; listed options may be superseded at any time. All drawings and illustrations are for reference only and were complete and accurate as of this manual's release. Refer to www.aerotech.com for the most up-to-date information.

	ACS100LP	ACS150LP	ACS200LP	
	±360° Continuous			
	ER8 ER25		ER40	
	5 mm 16 mm		25 mm	
	1500 rpm 600 rpm		600 rpm	
Uncalibrated	38	88 µrad (80 arc sec)		
Calibrated	29.1 µrad (6 arc sec)	48.5 μrad (10 arc sec)	48.5 µrad (10 arc sec)	
	14.6 µrad (3 arc sec) 19.4 µrad (4 arc sec)		19.4 µrad (4 arc sec)	
ER8	1.5 kg (Axial); 0.5 kg (Radial); 0.75 N⋅m (Moment)			
ER25	10 kg (Axial); 5 kg (Radial); 6 N·m (Moment)			
ER40	15 kg (Axial); 10 kg (Radial); 12 N·m (Moment)			
.(4)		<25 µm		
	48.5 µrad (10 arc sec)	97 µrad (20 arc sec)	97 μrad (20 arc sec)	
Unloaded	0.00038 kg·m ²	0.00242 kg·m ²	0.00843 kg·m ²	
	2.0 kg	4.3 kg	7.6 kg	
Tabletop	Hardcoat			
Stage	Black Anodize			
	Calibrated ER8 ER25 ER40 (4) Unloaded Tabletop	ER8 5 mm 1500 rpm Uncalibrated 29.1 μrad (6 arc sec) 14.6 μrad (3 arc sec) ER8 1.5 kg (Axial); 0. ER25 10 kg (Axial); (4) 48.5 μrad (10 arc sec) Unloaded 0.00038 kg·m² 2.0 kg	±360° Continuous ER8 ER25 5 mm 16 mm 1500 rpm 600 rpm Uncalibrated 388 μrad (80 arc sec) Calibrated 29.1 μrad (6 arc sec) 48.5 μrad (10 arc sec) 48.5 μrad (10 arc sec) ER8 1.5 kg (Axial); 0.5 kg (Radial); 0.75 N·m ER8 1.5 kg (Axial); 0.5 kg (Radial); 6 N·m (M ER40 15 kg (Axial); 10 kg (Radial); 12 N·m (M ER40 15 kg (Axial); 10 kg (Radial); 12 N·m (M (4) <25 μm	

Table 1-5: ACS LP Series Specifications

1. ACS LP collet chuck accepts Rego-Fix ER collets manufactured to DIN6499 specifications only..

2. Maximum speed based on stage capability. Maximum application velocity may be limited by system data rate and system resolution..

3. Maximum loads are mutually exclusive. Loading limits are due to the collet chuck mechanism. Contact Aerotech directly if part load requirement exceeds specifications..

4. Measured TIR of precision gage pin chucked with an ultra precision ER collet (DIN6499) 6 mm away from collet face with no load..

5. Collet chuck mechanism is normally-closed. Collet mechanism requires air to open collet chuck. Air supply must be dry (0°F dewpoint) oil-less air OR 99.99% pure Nitrogen. Air or nitrogen must be filtered to 1 micron particle size or better.

6. Repeatability and accuracy are dependent on encoder resolution. To achieve the listed specifications, encoder resolution must be 0.36 arc sec or finer.

1.3. Air Requirements

The air pressure supplied to the collet holder or gripper is important in ensuring that the material or tool is released properly, or for the optional gripper, that the material is held securely.

- If compressed air is used, it must be filtered to 1 micron, dry to 0° F dew point, and oil free.
- If nitrogen is used, it must be 99.99% pure and filtered to 1 microns.

The chuck becomes fully open at approximately 4-7 bar (60-100 psig) depending on the collet size. Higher pressures will not cause damage to the rotary union, but high flow rates will result. Because of the noncontact rotary union design on collet-equipped stages, a small amount of leakage will occur. Approximate leakage rates of between 10 Lpm (0.5 CFM) and 40 Lpm (1.4 CFM), depending on pressure, will be observed when the collet is open.

Chapter 2: Mechanical Specifications and Installation

WARNING: ACS LP installation must be in accordance to instructions provided by this manual and any accompanying documentation. Failure to follow these instructions could result in injury or damage to the equipment.

2.1. Unpacking and Handling the Stage

WARNING: It is the customer's responsibility to safely and carefully lift the stage.

•

parts may shift and cause bodily injury.
Improper handling could adversely affect the performance of the ACS LP. Use care when moving the ACS LP.

Make sure that all moving parts are secure before moving the ACS LP. Unsecured moving

• Lift only by the base. Do not use the tabletop or cables as lifting points.

NOTE: If any damage has occurred during shipping, report it immediately.

Carefully remove the ACS LP stage from its protective shipping container. Gently set the ACS LP stage on a smooth, flat, and clean surface.

Before operating the ACS LP stage, it is important to let it stabilize at room temperature for at least 12 hours. Allowing it to stabilize to room temperature will ensure that all of the alignments, preloads, and tolerances are the same as they were when tested at Aerotech. Use compressed nitrogen or clean, dry, oil-free air to remove any dust or debris that has collected during shipping.

Each ACS LP has a label listing the system part number and serial number. These numbers contain information necessary for maintaining or updating system hardware and software. Locate this label and record the information for later reference.

Shipping Clamps

If the ACS LP has shipped as part of a system, shipping clamps (typically red, anodized aluminum) may have been installed to secure the system prior to shipment. The shipping clamps, if installed, will need to be removed prior to machine start up.

2.2. Dimensions

NOTE: Aerotech continually improves its product offerings; listed options may be superseded at any time. All drawings and illustrations are for reference only and were complete and accurate as of this manual's release. Refer to www.aerotech.com for the most up-to-date information.

Figure 2-1: ACS100LP Dimensions

Figure 2-2: ACS150LP Dimensions

Figure 2-3: ACS200LP Dimensions

2.3. Securing the Stage to the Mounting Surface

WARNING: Make sure that all moving parts are secure before moving the ACS LP. Unsecured moving parts may shift and cause bodily injury.

WARNING: The ACS LP must be mounted securely. Improper mounting can result in injury and damage to the equipment.

The mounting surface must be flat and have adequate stiffness to achieve the maximum performance from the ACS LP stage. When it is mounted to a non-flat surface, the stage can be distorted while the mounting screws are tightened. This distortion will decrease overall accuracy. Adjustments to the mounting surface must be done before the stage is secured.

Inspect the mounting surface for dirt or unwanted residue and clean if necessary. Use precision flatstones on the mounting surface to remove any burrs or high spots. Clean the mounting surface with a lint-free cloth and acetone or isopropyl alcohol and allow the cleaning solvent to completely dry. Gently place the stage on the mounting surface.

NOTE: To maintain accuracy, the mounting surface must be flat to within 5 μ m over the entire stage footprint.

NOTE: The stage base is precision machined and verified for flatness prior to stage assembly at the factory. If machining is required to achieve the desired flatness, it should be performed on the mounting surface rather than the stage base. Shimming should be avoided if possible. If shimming is required, it should be minimized to improve the rigidity of the system.

ACS LP series stages have a fixed mounting pattern (as shown in Figure 2-4).

Tightening torque values for the mounting hardware are dependent on the properties of the surface to which the stage is being mounted. Values provided in Table 2-1 are typical values and may not be accurate for your mounting surface. Refer to Section 2.2. for specific model mounting locations and dimensions.

Mounting Hardware			Typical Screw Torque
ACS100LP	Standard	6 mm [1/4"] SHCS	7 N∙m
	Side	M5 x 0.8 THD x 6.4 [0.25] DP	4 N∙m
ACS150LP, ACS200LP	Standard	6 mm [1/4"] SHCS	7 N∙m
	Side	M5 x 0.8 THD x 7.6 [0.30] DP	4 N∙m

Table 2-1: Stage to Mounting Surface Hardware

Figure 2-5: Typical ACS150LP Stage Showing Side Mounting Holes

2.4. Clamping a Workpiece to the Collet

To prevent damage to the stage or parts, test the operation of the stage before any material is held in the collet. Proceed with the electrical installation. Document all results for future reference. For information on electrical connections, refer to the documentation of the motion control system and Chapter 3.

To operate the collet, clean compressed air or nitrogen must be supplied to the stage (refer to Section 1.3.). The one-touch air inlet fitting accepts 4 mm OD plastic air line.

Once air is supplied, material of the appropriate size can be placed in the collet. All collets supplied by Aerotech are clearly labeled with their clamping size range and collet style. Be sure to use only the correct size material in the collet. If an incorrect material size is clamped, the accuracy of the collet could be compromised. Never clamp material or tools that are larger than the specified range. It is also important to have the material or tool inserted at least 2/3 the length of the collet bore. Any less than this could cause permanent deformation of the collet and reduce accuracy (refer to Section 2.5.1. for collet installation).

2.4.1. Load Capability

The ACS LP is designed for tubular manufacturing applications. With this in mind, the tubes loaded into the collet chuck of the rotary axis must fall within the maximum load parameters in Section 1.2.

NOTE: Maximum loads are mutually exclusive. Loading limits are due to the collet chuck mechanism. Contact Aerotech directly if part load requirement exceeds specifications.

NOTE: Moment loads on the collet assembly, even if within the allowable load range, may adversely affect collet runout. Avoid moment loads for optimal performance.

2.5. Changing the Workholding Devices

NOTE: Aerotech recommends using only electro-polished collets manufactured to DIN6499 specifications.

Various grip diameters are commonly available and can be interchanged following the collet removal and installation procedure detailed in Section 2.5.1.

2.5.1. Collet Change Procedure

DANGER: To minimize the possibility of bodily injury or death, disconnect all electrical power prior to performing any maintenance or making adjustments to the equipment.

- Step 1: Remove power to the stage before installing or removing the collet.
- Step 2: Apply air pressure to loosen the collet chuck.
- Step 3: Remove the collet nut by turning it counterclockwise. If necessary, use a spanner wrench (available from Aerotech). Use caution when removing the collet nut as the collet may fall from its housing and be damaged.
- Step 4: Clean the collet housing, collet nut threads, collet nut, and new collet. Acetone or isopropyl alcohol can be used to clean the metal components. Apply a small amount of any anti-seize lubricant to the collet taper to help reduce friction and decrease wear (refer to section Section 4.2.1.).
- Step 5: Refer to the instructions in Figure 2-6 to install or remove a collet from the collet nut.
- Step 6: Use the collet nut to guide the collet into the stage (Figure 2-7). Make sure that the collet is installed properly in its taper. Be sure that air pressure is still being supplied to the stage so the collet chuck is in the open position.
- Step 7: Tighten the collet nut. Tightening by hand is sufficient as the clamping force is not determined by the torque of the nut, but by the force of internal springs. Spanner wrenches may be used if desired.
- Step 8: Restore power to the stage.

Figure 2-6: Schematic of Collet Insertion Into and Removal From Collet Nut

Figure 2-7: Installation Procedure for Collet

This page intentionally left blank.

Chapter 3: Electrical Specifications and Installation

WARNING: Electrical installation must be performed by properly qualified personnel.

Aerotech motion control systems are adjusted at the factory for optimum performance. When the ACS LP is part of a complete Aerotech motion control system, setup usually involves connecting the ACS LP to the appropriate drive chassis with the cables provided. Labels on the system components usually indicate the appropriate connections.

If system level integration was purchased, an electrical drawing showing system interconnects has been supplied with the system (separate from this documentation).

The electrical wiring from the motor and encoder are integrated at the factory. Refer to the sections that follow for standard motor wiring and connector pinouts.

WARNING: Applications requiring access to the stage while it is energized will require additional grounding and safeguards. The System Integrator or qualified installer is responsible for determining and meeting all safety and compliance requirements necessary for the integration of this stage into the final application.

DANGER: Remove power before connecting or disconnecting electrical components or cables. Failure to do so may cause electric shock or damage to the equipment.

WARNING: Operator access to the base and tabletop must be restricted while connected to a power source. Failure to do so may expose the operator to Electrical Shock or Mechanical hazards.

NOTE: Refer to the controller documentation to adjust servo gains for optimum velocity and position stability.

3.1. Motor and Feedback Connectors

Stages equipped with standard motors and encoders come from the factory completely wired and assembled.

NOTE: Refer to the other documentation accompanying your Aerotech equipment. Call your Aerotech representative if there are any questions on system configuration.

NOTE: If using standard Aerotech motors and cables, motor and encoder connection adjustments are not required.

The protective ground connection of the ACS LP provides motor frame ground protection only. Additional grounding and safety precautions are required for applications requiring access to the stage while it is energized. The System Integrator or qualified installer is responsible for determining and meeting all safety and compliance requirements necessary for the integration of this stage into the final application.

DANGER: Remove power before connecting or disconnecting electrical components or cables. Failure to do so may cause electric shock or damage to the equipment.

WARNING: The protective ground connection must be properly installed to minimize the possibility of electric shock.

WARNING: Operator access to the base and tabletop must be restricted while connected to a power source. Failure to do so may expose the operator to Electrical Shock or Mechanical hazards.

CAUTION: The stage controller must provide over-current and over-speed protection. Failure to do so may result in permanent damage to the motor and stage components.

Table 3-1: Motor Pinouts

Pin	Description	Connector
Case	Shield Connection	
A1	Motor Phase A	
A2	Motor Phase B	_ ≥
A3	Motor Phase C	
1	Reserved	
2	Reserved	S S S S S S S S S S S S S S S S S S S
3	Reserved	
4	Reserved	≦
5	Reserved	
A4	Frame Ground (motor protective ground)	

Table 3-2: Mating Connector Part Numbers for the Motor Connector

Mating Connector	Aerotech P/N	Third Party P/N
Backshell	ECK00656	Amphenol #17E-1726-2
Sockets [QTY. 4]	ECK00659	ITT Cannon #DM53744-6
Connector	ECK00657	ITT Cannon #DBM9W4SA197

Pin	Description	Connector
Case	Shield	
1	Reserved	
2	Over-Temperature Thermistor sensor	
3	+5 V power supply	
4	Reserved	
5	Hall Effect sensor, phase B	$\left(\right)$
6	Marker-N	
7	Marker	14 •1
8	Reserved	0
9	Reserved	
10	Hall Effect sensor, phase A	0
11	Hall Effect sensor, phase C	•
12	Reserved	0
13	Reserved	0
14	Cosine	•
15	Cosine-N	•
16	+5 V power supply	[●] 25 ●13
17	Sine	
18	Sine-N	
19	Reserved	
20	Common ground	
21	Common ground	
22	Reserved	
23	Reserved	
24	Reserved	
25	Reserved	

Table 3-3: Feedback Pinouts

Table 3-4: Mating Connector Part Numbers for the Feedback Connector

Mating Connector	Aerotech P/N	Third Party P/N
Backshell	ECK00656	Amphenol #17E-1726-2
Connector	ECK00300	FCI DB25S064TLF

3.2. Motor and Feedback Wiring

All motor and controller manufacturers have their own designations for motor phases A/B/C and Hall signals A/B/C (refer to Section 3.5. for motor phasing). Shielded cables are required for the motor and feedback connections.

Figure 3-1: Motor and Feedback Wiring

3.3. Motor and Feedback Specifications

Table 3-5: Feedback Specifications

Hall-Effect Sensors Specifications			
Supply Voltage	5 V ±5%		
Supply Current	50 mA		
Output Type	Open Collector		
Output Voltage	24 V max (pull up)		
Output Current	5 mA (sinking)		

Thermistor Specifications			
Polarity	Logic "0" (no fault)		
Polality	Logic "1" (over-temperature fault)		
Cold Resistance	~100 Ω		
Hot Resistance ~10 K			
Note: 1K pull-up to +5V recommended.			

Encoder Specifications				
Supply Voltage	5 V ±5%			
Supply Current 250 mA (typical)				
Output Signals	Sinusoidal Type (Incremental Encoder): 1 V _{pk-pk} into 120 Ω Load (differential signals SIN+, SIN-, COS+, COS- are .5 V _{pk-pk} relative to ground.)			
	Digital Output (Incremental Encoder): RS422/485 compatible			

Table 3-6: Encoder Specifications

Model	ACS100LP	ACS150LP	ACS200LP
Fundamental Resolution	3600 lines/rev	10000 lines/rev	10000 lines/rev
-E1 ⁽¹⁾	0.09/0.0225 arc sec/line	0.0324/0.0081 arc sec/line	0.0324/0.0081 arc sec/line
-E2	18 arc sec/line	6.48 arc sec/line	6.48 arc sec/line
-E3	9 arc sec/line	3.24 arc sec/line	3.24 arc sec/line
-E4	3.6 arc sec/line	1.296 arc sec/line	1.296 arc sec/line
-E5	1.8 arc sec/line	0.648 arc sec/line	0.648 arc sec/line

1.-E1 shows x4000/x16000 total interpolation

Table 3-7: Maximum Speed (rpm) Per Encoder Option

Encoder Option	ACS100LP	ACS150LP	ACS150LP
-E1, -E2, -E3, -E4	1500 rpm	600 rpm	600 rpm
-E5	800 rpm	300 rpm	300 rpm

NOTE: The encoders used on all ACS LP series stages come standard with a 16 MHz clock rate. Aerotech can provide slower or faster clock rates to match the controller being used. Consult Aerotech for more information.

		S-76-35
		(ACS100LP)
Performance Specificatio	ns ^(1,5)	
Winding Designation	-	-A
Stall Torque, Cont. ⁽²⁾	N∙m	0.48
Peak Torque ⁽³⁾	N∙m	1.92
Electrical Specifications (5)	
Winding Designation		-A
BEMF Const., line-line, Max	V _{pk} /krpm	29.1
Continuous Current,	A _{pk}	2.0
Stall ⁽²⁾	A _{rms}	1.4
Peak Current, Stall ⁽²⁾	A _{pk}	8.0
	A _{rms}	5.7
Torque Constant ^(4, 9)	N·m/A _{pk}	0.24
	N·m/A _{rms}	0.34
Motor Constant ^(2, 4)	N·m/√W	0.075
Resistance, 25°C, line- line	Ω	10.5
Inductance, line-line	mH	1.40
Maximum Bus Voltage	V _{DC}	340
Thermal Resistance °C/W		1.83
Number of Poles		14

Table 3-8: Motor Specifications (ACS100LP)

3. Peak force assumes correct rms current; consult Aerotech.

4. Torque constant and motor constant specified at stall

5. All performance and electrical specifications $\pm 10\%$

6. Specifications given are for the motor only. When integrated into a housing with bearings additional losses should be considered.

7. Maximum winding temperature is 100 °C (thermistor trips at 100 °C)

8. Ambient operating temperature range 0 °C - 25 °C; consult Aerotech for performance in elevated ambient temperatures

9. All Aerotech amplifiers are rated $A_{pk};$ use torque constant in $N\cdot m/A_{pk}$ when sizing

		S-13 (ACS1	
Performance Specification	ons ^(1,5)		
Winding Designation		-A	-В
Stall Torque, Cont. ⁽²⁾	N∙m	2.3	36
Peak Torque ⁽³⁾	N∙m	9.4	12
Electrical Specifications	(5)		
Winding Designation	-	-A	-В
BEMF Const., line-line, Max	V _{pk} /krpm	75.1	37.5
Continuous Current,	A _{pk}	3.8	7.6
Stall ⁽²⁾	A _{rms}	2.7	5.4
Peak Current, Stall ⁽²⁾	A _{pk}	15.2	30.4
	A _{rms}	10.7	21.5
Torque Constant ^(4, 9)	N∙m/A _{pk}	0.62	0.31
	N·m/A _{rms}	0.88	0.44
Motor Constant ^(2, 4)	N·m/√W	0.2	65
Resistance, 25°C, line- line	Ω	5.6	1.4
Inductance, line-line	mH	1.70	0.43
Maximum Bus Voltage	V _{DC}	340	
Thermal Resistance °C/W 0.95		95	
Number of Poles		18	

Table 3-9: Motor Specifications (ACS150LP)

1. Performance is dependent upon heat sink configuration, system cooling conditions, and ambient temperature

2. Values shown @ 75°C rise above a 25 °C ambient temperature, with housed motor mounted to a 330 mm x 330 mm x 13 mm aluminum heat sink

3. Peak force assumes correct rms current; consult Aerotech.

4. Torque constant and motor constant specified at stall

5. All performance and electrical specifications $\pm 10\%$

6. Specifications given are for the motor only. When integrated into a housing with bearings additional losses should be considered.

7. Maximum winding temperature is 100 °C (thermistor trips at 100 °C)

8. Ambient operating temperature range 0 °C - 25 °C; consult Aerotech for performance in elevated ambient temperatures

9. All Aerotech amplifiers are rated Apk; use torque constant in $N \cdot m/A_{pk}$ when sizing

		S-180 (ACS20	
Performance Specification	ons ^(1,5)		
Winding Designation		-A	-В
Stall Torque, Cont. ⁽²⁾	N∙m	5.99	9
Peak Torque ⁽³⁾	N∙m	23.9	8
Electrical Specifications	(5)		
Winding Designation	-	-A	-В
BEMF Const., line-line, Max	V _{pk} /krpm	268.7	134.4
Continuous Current,	A _{pk}	2.7	5.4
Stall ⁽²⁾	A _{rms}	1.9	3.8
Peak Current, Stall ⁽²⁾	A _{pk}	10.8	21.6
Feak Current, Stall ()	A _{rms}	7.6	15.3
Torque Constant ^(4, 9)	N·m/A _{pk}	2.22	1.11
	N·m/A _{rms}	3.14	1.57
Motor Constant ^(2, 4)	N·m/√W	0.628	0.628
Resistance, 25°C, line- line	Ω	12.8	3.2
Inductance, line-line	mH	3.40	0.85
Maximum Bus Voltage	V _{DC}	340	
Thermal Resistance	°C/W	0.82	
Number of Poles		18	

Table 3-10: Motor Specifications (ACS200LP)

1. Performance is dependent upon heat sink configuration, system cooling conditions, and ambient temperature

2. Values shown @ 75°C rise above a 25 °C ambient temperature, with housed motor mounted to a 330 mm x 330 mm x 13 mm aluminum heat sink

3. Peak force assumes correct rms current; consult Aerotech.

4. Torque constant and motor constant specified at stall

5. All performance and electrical specifications $\pm 10\%$

6. Specifications given are for the motor only. When integrated into a housing with bearings additional losses should be considered.

7. Maximum winding temperature is 100 °C (thermistor trips at 100 °C)

8. Ambient operating temperature range 0 °C - 25 °C; consult Aerotech for performance in elevated ambient temperatures

9. All Aerotech amplifiers are rated Apk; use torque constant in N \cdot m/Apk when sizing

3.4. Marker and Machine Direction

Aerotech stages are configured to have positive and negative "machine" directions. The machine direction defines the phasing of the feedback and motor signals and is dictated by the stage wiring (refer to Section 3.5. for Motor and Feedback phasing information). Programming direction of a stage is set by the controller that is used to move the stage. Programming direction is typically selectable in the controller, while machine direction is hardwired in the stage. Figure 3-2 shows the machine direction of ACS LP stages.

CW Rotation (Positive Machine Direction)

Figure 3-2: Machine Direction

3.5. Motor and Feedback Phasing

Motor phase voltage is measured relative to the virtual wye common point.

Chapter 4: Maintenance

DANGER: To minimize the possibility of bodily injury or death, disconnect all electrical power prior to performing any maintenance or making adjustments to the equipment.

WARNING: Failure to follow the maintenance procedures outlined in this section will result in voiding stage warranty.

4.1. Stage Service and Inspection Schedule

Inspect the ACS LP at least once per month. A longer or shorter inspection interval may be required depending on the application and conditions, such as the duty cycle, speed, and environment.

If the stage is equipped with a rear seal (ACS150LP and ACS200LP only), the seal should be examined for excessive wear as part of this inspection interval. The application will determine the required replacement interval for the seal. The bearings, motor, and encoder for the ACS150LP series require no lubrication or maintenance.

Monthly inspections should include but not be limited to:

- Visually inspect the stage and cables.
- Re-tighten loose connectors.
- Replace or repair damaged cables.
- Clean the ACS LP and any components and cables as needed.
- Repair any damage before operating the ACS LP.
- Inspect and perform an operational check on all safeguards and protective devices.

4.2. Stage Cleaning and Lubrication

Cleaning

Before using a cleaning solvent on any part of the ACS LP, blow away small particles and dust with nitrogen or, less preferably, clean, dry, compressed air.

Any external metal surface of the ACS LP can be cleaned with isopropyl alcohol on a lint-free cloth.

The seals should only be cleaned with small amounts of isopropyl alcohol if necessary. Acetone should never be used on seals.

WARNING: Make sure that all solvent has completely evaporated before attempting to move the stage.

WARNING: Acetone should never be used to clean the o-rings or seals.

Lubrication

The bearings should not require relubrication under normal operating conditions in a clean environment. If the application process uses only a small portion of travel for most of the duty cycle, periodically drive the stage through full travel to redistribute the lubrication.

Lubricate seals with Dow Corning Molykote 55 O-ring Lubricant or an equivalent O-ring lubricant.

4.2.1. Collet and Collet Chuck Lubrication and Cleaning

WARNING: Failure to lubricate and clean the collet interface surfaces will cause premature failure and wear that may void the warranty.

For the collet chuck and collet to operate properly, preventative maintenance and regular cleaning is required.

Before inserting any collet into the chuck, clean the chuck taper and the collet with acetone or isopropyl alcohol and a lint-free cloth. If required, nitrogen or clean, dry, oil-less compressed air can be used to clean out the collet grooves. Inspect the collet and the chuck interface surfaces to be sure no wear marks are present. If wear or fret marks (copper colored oxide marks) are present, the taper can be lightly polished with a fine-grit crocus cloth. The goal is to clean the surface of the taper and not to remove an excessive amount of material. If the wear marks are large, or excessive polishing is required to remove these marks, the collet chuck and collet may need to be replaced. Contact Aerotech Technical Support for more information. Wear and fretting can be prevented with proper lubrication and maintenance intervals.

After inspection and cleaning, grease the collet chuck taper and collet taper with a small amount of lubricant. Then, install the collet into the collet chuck. Aerotech recommends using the lubricants listed in Table 4-1.

Vender	Product	ltem#	Description
Henkel Technologies	Loctite	80209	Silver Grade Anti-Seize
Henkel Technologies	Loctite	51168	Food Grade Anti-Seize
Jet Lube	White Knight	16404	Food Grade Anti-Seize

Table 4-1: Recommended Lubricants

Lubricant inspection and replenishment depend on application conditions such as collet chuck duty cycle, clamping force (air pressure), and the machining environment. An inspection interval of once every 8 operational hours is recommended until a trend develops for the application. Longer or shorter intervals may be required to maintain a film of lubricant on the collet taper. The collet and chuck should also be cleaned and relubricated after sitting for an extended period of time without operation. If the lubrication sits for long periods of time, it can become dry and lose its lubrication properties. Insufficient lubrication will lead to wear, fretting corrosion, and sticking or lock-up of the collet closer. If this occurs, the machine should be immediately stopped and the collet and collet chuck cleaned and relubricated every time the collet is removed.

4.3. Seal Replacement

4.3.1. Piston Seal Change Procedure

The seals on the collet piston should be replaced if a leak or excess wear becomes apparent. Figure 4-1 shows an exploded view of the assembly and includes all parts involved in the process.

DANGER: To minimize the possibility of bodily injury or death, disconnect all electrical power prior to performing any maintenance or making adjustments to the equipment.

Table 4-2: Piston Seal Replacement Part Numbers

	ACS100LP	ACS150LP	ACS200LP
Outer Piston Seal (QTY. 1)	MCA02051	MCA02093	MCA01985
Inner Piston Seal (QTY. 1)	MCA02052	MCA02094	MCA01986

- Step 1: Remove power to the stage.
- Step 2: Supply air to the stage in order to release the collet.
- Step 3: Remove the collet nut by turning it counterclockwise. Spanner wrenches may be necessary for removal and are available from Aerotech.

Step 4: Remove air pressure from the stage. This will allow the internal springs to relax slightly and ease further disassembly.

DANGER: The collet cover is under tension from internal springs. Removing the collet cover screws incorrectly can result in personal harm and damage to the equipment.

- Step 5: Refer to Figure 4-1. Remove every other collet cover screw (i.e., screws 1, 3, 5, and 7). All screws cannot be removed at once, as the cap is under tension from several springs and will be damaged or cause bodily harm if removed without caution.
- Step 6: Obtain four M4 x 0.7 x 12 mm long socket head cap screws and thread them into the holes where the previous screws were removed. Tighten each one until it bottoms out in its hole.
- Step 7: Loosen the four remaining collet cover screws, 1/4 turn at a time. Loosen the screws in a cross pattern (i.e., loosen screw number 2, then screw number 6, then screw number 8, then screw number 4, then return to screw number 2). Repeat this process until the longer screws are supporting the tension of the springs entirely. It is then safe to remove the remaining collet cover screws completely.
- Step 8: Using the same method as in Step 7, remove the longer screws until the spring tension is completely relieved.
- Step 9: Carefully slide the collet piston assembly out from its housing. Use caution not to tilt the piston assembly in its housing as this could cause damage to the housing, seals, or piston.
- Step 10: It is now safe to remove the collet cover retaining ring. This can be done with a flat-head screwdriver or a pair of needle nosed pliers.
- Step 11: Remove the collet cover and the springs from the collet piston.
- Step 12: There are two seals on the piston itself. One is an external seal that seals the piston against its housing; the other is an internal seal that seals the piston against the collet sleeve. To remove the seals, carefully pry them out of their housings with a small screwdriver or pick. Use caution not to scratch the surface of the piston.
- Step 13: Thoroughly clean seal mounting surfaces, the chamfers, and all surfaces that the new seals may come in contact with. Even small particles or debris can damage the seals during installation.
- Step 14: Lubricate the new seals with o-ring lubricant as specified in Section 4.2.
- Step 15: Press the new seals over the chamfer and into their respective grooves. Be sure to align the seals such that the open end (when looking at a cross section) is facing away from the collet, as shown in Figure 4-3. The direction of the seal is extremely important in sealing the piston. Make sure that the seals sit into their mounting grooves by running a fingernail around the edge. If the seal is tilted or twisted slightly its function will be severely compromised.
- Step 16: Reinstall the springs.
- Step 17: Place the collet cover over the piston and reinstall the collet cover retaining ring.
- Step 18: Reinstall the collet piston assembly into its housing. There are chamfers to help guide the piston into place, but use caution not to twist or damage the seals. It is recommended that a small amount of o-ring lubricant be used.

Step 19: Installation of the collet cover is the reverse of removal. Begin by inserting the four 12 mm long screws in every other hole and tightening until they bottom out in their respective holes. Then install the shorter original screws into the remaining holes and tighten in a cross pattern until the collet cover is seated against the shaft. Install the remaining four original screws. Torque all screws to a final torque of 1.8 to 2.0 N·m (16 to 18 in·lbs).

Step 20: Apply air pressure to the stage in order to install the collet.

Step 21: Install the new collet as described in Section 2.5.1.

Figure 4-2: Piston Seal Installation Procedure

Figure 4-3: Cross-Section View of Piston Showing Seal Orientation

4.3.2. Rear Seal Change Procedure

DANGER: To minimize the possibility of bodily injury or death, disconnect all electrical power prior to performing any maintenance or making adjustments to the equipment.

The rear seal (-SL option) on ACS150LP and ACS200LP stages may need to be replaced because of excess wear. Figure 4-4 shows an exploded view of the assembly and includes all parts involved in the process.

Table 4-3: Rear Seal Replacement Part Numbers

	ACS150LP	ACS200LP
Rear Seal (QTY. 1)	MCA01818	MCA01798

Figure 4-4: Exploded Drawing of Rear Seal Components

- 1. Remove power from the stage.
- 2. Remove the rear cover mounting screws.
- 3. Slide the rear cover out of the stage. This may require a pick or small screwdriver due to the friction of the seal on.
- 4. Remove the retaining ring from the rear cover.
- 5. Carefully pry the seal out of its housing. Use caution not to scratch the sealing surfaces. Note the orientation of the seal.
- 6. Lubricate the new seal O-ring lubricant (see Section 4.2.) and carefully slide it into the rear cover. Be sure to replace the seal in the correct orientation. The open end of the seal should face away from the stage tabletop.
- 7. Replace the retaining ring.
- 8. Slide the rear cover back onto the stage, using caution not to twist or damage the seal. Replace the rear cover mounting screws.
- 9. Restore power to the stage.

4.4. Troubleshooting

Symptom	Possible Cause and Solution
Stage will not move	Controller trap or fault (refer to the Controller documentation).
Stage moves uncontrollably	 Encoder (sine and cosine) signal connections (refer to Chapter 3 and Controller documentation). Motor Connections (refer to Chapter 3 and the Controller documentation).
Stage oscillates or squeals	 Gains misadjusted (refer to the Controller documentation). Encoder signals (refer to the Controller documentation).
Collet Chuck will not close	The collet is jammed due to debris, fretting, etc. Clean and lubricate the the collet assembly (refer to Section 4.2.1.)
Collet Chuck will not open	 Insufficient air pressure supplied to the stage. Make sure there are no blockages in the supply line and the pressure is high enough (refer to Section 1.3.). The collet is jammed due to debris, fretting, etc. Clean and lubricate the the collet assembly (refer to Section 4.2.1.)

This section provides some information regarding typical problems.

This page intentionally left blank.

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit https://www.aerotech.com/global-technical-support.aspx for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

http://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA, CANADA, MEXICO	CHINA	GERMANY
Aerotech, Inc.	Aerotech China	Aerotech Germany
Global Headquarters	Full-Service Subsidiary	Full-Service Subsidiary
Phone: +1-412-967-6440	Phone: +86 (21) 5508 6731	Phone: +49 (0)911 967 9370
Fax: +1-412-967-6870		Fax: +49 (0)911 967 93720

UNITED KINGDOM

Aerotech Taiwan Aero Full-Service Subsidiary Full Phone: +886 (0)2 8751 6690 Phone

Aerotech United Kingdom Full-Service Subsidiary Phone: +44 (0)1256 855055 Fax: +44 (0)1256 855649

Have your customer order number ready before calling.

TAIWAN

Appendix B: Revision History

Revision	General Information
1.01.00	 Added -WR (wrench) part numbers: Table 1-1, Table 1-2, and Table 1-3 Added piston seal replacement part numbers: Table 4-2 and Table 4-3
1.00.00	New manual

This page intentionally left blank.

Index

Index		S-76	31
-		EN 60204-1 2010	7
-WR	9-11	EN ISO 12100 2010	7
2		Encoder Specifications	30
2006/42/EC	7	G	
А		Global Technical Support	2
ACS-150LP Motor Specifications (S-130-39)	32	н	
ACS-200LP Motor Specifications (S-180-44)	33	Hall-Effect Sensors Specifications	30
ACS100LP Motor Specifications (S-76-35)	31	Humidity	12
air		I	
compressed	14	Inspection Schedule	37
leakage	14	installation	
nitrogen	14	collet	22
Altitude	12	isopropyl alcohol	38
Ambient Temperature	12	L	
С		label	15
cleaning		leakage (air)	14
collet/collet chuck	39	lubrication	
mounting surface	19	collet/collet chuck	39
solvents	38	Lubrication	38
Cleaning	38	м	
collet installation	22	maintenance	37
collet removal	22	MCA01857	11
collet/collet chuck		MCA02007	11
cleaning	39	MFB25378-01	9
lubrication	39	MFB25378-02	10
compressed air	14	Motor Specifications (ACS100LP)	31
D		Motor Specifications (ACS150LP)	32
Directive 2006/42/EC	7	Motor Specifications (ACS200LP)	33
E		mounting surface	
Electrical Specifications		cleaning	19
S-130	32	securing stage	19
S-180	33		

Ν		stage	
nitrogen	14	distortion	19
Р		stabilizing	15
part number	15	Support	2
Performance Specifications		т	
S-130	32	Technical Support	2
S-180	33	Thermistor Specifications	30
S-76	31	v	
piston seal replacement	40	Vibration	12
Protection Rating	12	W	
protective ground connection	26	Warranty and Field Service	47
R		Wrench	9-11
red, anodized aluminum	15		
S			
S-130			
Electrical Specifications	32		
Performance Specifications	32		
S-130-39 (ACS150LP) Motor Specifications	32		
S-180			
Electrical Specifications	33		
Performance Specifications	33		
S-180-44 (ACS200LP) Motor Specifications	33		
S-76			
Electrical Specifications	31		
Performance Specifications	31		
S-76-35 (ACS100LP) Motor Specifications	31		
serial number	15		
shipping clamps	15		
Shipping Clamps	15		
solvents	38		
Specifications	13		
stabilizing stage	15		